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Abstract 

The project goal was to develop a system for monitoring Covid-19 vaccine temperatures 

during storage using LoRa and LoRaWAN technology. The project based its temperature 

range criteria on Pfizer’s vaccine. The monitoring of this temperatures is important to 

make sure the Covid-19 vaccine keep the correct temperature while in the ultra-cold 

freezer, and therefore keeping the expected life expectancy before the next step in the 

vaccine process.  

To solve this task there were implemented a LoRaWAN end device for temperature 

measurements. The end device transmits its data to a back-end system for data storage, 

data visualisation, and user notification when temperatures reach crucial levels. 

Measuring ultra-low temperatures was done successfully by using a K-type thermocouple. 

These measurements are successfully transmitted to the back-end system. The 

measurements were visualised in a way that suits the measurement type, and the user 

was successfully notified by SMS and email when the temperature reached a crucial level. 

The project did not have a pre-study form, but topics that needed study became clear as 

the project progressed. For development, the project team used the rapid prototyping 

approach. 

The project is concluded as a good foundation for further development and it fulfils what 

the project set out to do. 
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1 Introduction 

This project aims to solve the task of monitoring Covid vaccine temperatures during 

shipment and storage. The temperature criteria for the vaccines are based on Pfizer’s 

Covid-19 vaccine. The project team wanted to provide a solution to the issue where 

vaccines are unusable if they are not stored in a low enough temperature. This issue is 

addressed with the development of a prototype for temperature measurement and data 

communication with the help of LoRa and LoRaWAN technology. In addition to the 

prototype end device, the project also implemented a back-end system for a private 

LoRaWAN network with data storage, data visualisation and notification for critical 

temperature level. The development is done using rapid prototyping, and the project has 

a study of relevant literature during the project process. This means that the project has a 

practical and a theoretical approach to solving this task. 

 

1.1 Team members 

Anders Wiig  

anderswi@hiof.no    

+47 93461796  

 

Daniel Muri  

danielmu@hiof.no  

+47 47390806  

 

Mathias Wexsahl Karlsvik  

mathiawk@hiof.no  

+47 95473637  

 

André Larsen  

andrelar@hiof.no   

+47 90672125 

 

1.2 Client 

Østfold University College department of electrical engineering is located at campus 

Fredrikstad. The electrical-engineering education is a comprehensive, profession-

oriented, and research-based education. The study plan has been prepared with the 

business community and is adapted to the working life’s need for basic engineering 

competence [1]. The study forms the basis for further development in the practice of the 

profession. Our project advisors are associate professor Manikandan Palanichamy and 

assistant professor Reidar Nordby. 
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1.3 Project background 

The project began with a presented topic for the thesis by Manikandan Palanichamy on 

behalf of Østfold University College. The topic presented was LoRaWAN technology in the 

context of Internet of Things (IoT) and how to create “smart” things. This technology can 

have several different use-cases where the amount of data to be transferred is small, i.e., 

such as that from sensory systems.  

With the main topic for thesis ascertained, the project team had to come up with ideas 

and thoughts on how to define the project in greater detail. The use-case that the team 

found interesting was that of which had a valuable connection with fighting Covid-19, and 

the distribution of vaccines. Therefore, the team decided to develop the project in the 

direction of monitoring Covid-19 vaccines storage parameters. 

 

1.4 Use case 

The use case is based on the temperature criteria for the Pfizer Covid vaccine. This 

vaccine has the following specific requirements for storage:  

▪ Before mixing, the vaccine may be stored in an ultra-cold freezer between -80ºC 

and -60ºC [2].  

The goal was to monitor the vaccines before the vaccines are mixed and prepared to 

ensure that they held the correct temperature while in the ultra-cold freezer, and 

therefore keeping the expected life expectancy before the next step in the vaccine 

process. The system is designed to monitor the temperature by having an end device 

attached to the vaccine-freezer or shipment. This then sends data to a back-end system 

that shows the temperature in given intervals. This provides temperature monitoring to 

check if the freezer or shipment temperature rises above of falls below critical level.  

 

1.4.1 Vaccine temperature monitoring during storage and transport (Logistics) 

LoRaWAN nodes can be moved easily between locations and gateways and still connect 

to the back-end system. This is because there is no hand-over between gateways [3]. This 

means that when a shipment of vaccines moves from for example a warehouse freezer to 
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a truck (or other means of transportation), the nodes surveying the shipment can 

seamlessly connect to the next gateway. This is further discussed in chapter “5.6 LoRa and 

LoRaWAN Network coverage”.  

 

During storage During transportation 

 

Figure 1 One gateway provides LoRaWAN coverage for the 

warehouse [4] 

 

Figure 2 One gateway provides LoRaWAN for all shipments inside 

the truck [4] 

1.5 Thesis statement 

How to utilize LoRaWAN for monitoring Covid-19 vaccine temperature, during 

transportation and storage? 

 

1.5.1 Partial thesis statements 

▪ How does a LoRaWAN system work? 

▪ How to measure very low temperatures? 

▪ How to develop a prototype to measure very low temperatures and transmit 

measurements via LoRa and LoRaWAN. 

▪ How to implement a back-end LoRaWAN system for receiving and conveying 

measurement data. 

▪ How to view and store the measurement data that arrives at the back-end of the 

LoRaWAN system. 

▪ How to notify when the measurement reaches a critical level? 
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1.6 Thesis limitations and definitions 

The project is limited to the geographical region of Norway and EU, in terms of allowed 

frequencies and frequency use. It is also limited to the temperature criteria of Pfizer’s 

vaccine only. The project limits itself to the development of a prototype end device and 

not a finished product. 

 

1.7 Project goals 

The overall goal for this project was to learn about LoRa and LoRaWAN and develop a 

LoRaWAN solution with a node and gateway connected to a back-end system for data 

processing. This made for a project that combines both a theoretical approach as well as a 

practical one. Therefore, this project has both process goals and product goals. 

 

1.7.1 Process goals 

The process goals in this project were mainly learning goals. The learning process was 

ongoing under the whole project. This is because the development of a prototype 

revealed topics that required some insight and helped forming the theoretical part of the 

project. Therefore, the theoretical part of the project was not in a pure pre-study form. 

The short timeframe of the project also demanded starting with development as soon as 

possible. 

 

1.7.2 Product goals 

The products were a LoRaWAN prototype and this bachelor thesis, which is a project 

report. The main goal for development was to develop an end device and a gateway 

wireless solution using LoRaWAN. The end device generated data and transmitted it using 

LoRaWAN, and the gateway- and end-system received and processed the data. A sub 

product goal was setting up a LoRaWAN system with data storage and processing 

capabilities. 
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1.8 Project implementation system overview 

 

Figure 3 The different parts in the implementation [5]. 

The project implements a complete LoRaWAN system consisting of an end device, which 

is a prototype developed by the team, and an implementation of a back-end system that 

is a server solution with different components. "Figure 3 The different parts in the 

implementation" shows how all the components connect with each other to form an 

entire system solution. This figure will be referred to in several of the following chapters 

to provide an overview of the parts covered. This will be done by highlighting the given 

element in the figure.  
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1.9 Why LoRaWAN? – LoRaWAN compared to mobile networks? 

LoRaWAN was originally developed to be for industrial IoT Sensors. The devices in a LoRa 

network can communicate over long distances, even if the devices are in separate 

buildings. A substantial lower power consumption makes for longer lasting batteries than 

the 4g/5g units. Whilst 4g/5g needs a vast infrastructure, LoRaWAN runs on smaller and 

more affordable devices. This makes for a reliable, affordable network for our use-case. 

[6] 

Further discussion around the use of LoRaWAN in comparison with mobile networks are 

covered in chapter “5.5.1”. 

1.9.1 Existing solutions 

There are solutions that are comparable to the project. Pfizer’s solution is simple, while 

the Orion M2M solution is similar to what the team wanted to develop. This is compared 

to this project’s solution in more detail in chapter “5.4”. 

 

2 Methodology 

The project utilizes literature study for the relevant theory. During development, some 

relevant theoretical topics presented itself as needing further study, hence the project did 

not have a pure pre-study but an ongoing study of relevant topics. With some limited 

possibilities for testing, the project relies on data sheets providing correct information. 

This project can be divided into two main categories: product development and writing of 

the report. Everyone was given the necessary components to build a prototype and the 

team members worked individually and had digital meetups for discussions about the 

development of prototypes and writing the thesis report. The report was divided into 

smaller parts and chapters and divided evenly among team members. 

2.1 Rapid prototyping – iteration-based development 

The development of a LoRa / LoRaWAN prototype was done with the use of the rapid 

prototype approach, which is an iteration-based methodology. The process covers the 

steps from concept to product, which is based around designing, building, testing, and 
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analysing the prototypes. Rapid prototyping allows for early functionality testing and is a 

fast and effective way to produce an end product. The production for the end device and 

designing of a backend system has been implemented by testing, analysing, and 

redesigning a prototype. [7] 

 

 

Figure 4: Rapid Prototyping [7] 

 

3 Theory 

This chapter covers the different theoretical parts needed in this projects implementation 

of a complete LoRaWAN-system. It also covers how to measure very low temperatures 

and power consumption for the microcontrollers used in the project. The different 

subchapters cover the OSI model, what LoRa is, which protocols are used, and theory 

around the parts needed for implementation of a back-end system. 

Understanding the fundamentals of the OSI-model is helpful in visualizing a LoRaWAN 

network as different parts of the systems are operating on different layers. For example, 

LoRa operates on the physical layer whilst LoRaWAN is operating on both the data link 

and network layer. An explanation of the OSI-model will be given further in 3.1. 

The 3.2 LoRa chapter covers what LoRa is, its specifications and the LoRa modulation 

technique. It also provides theory of why it is a useful and relevant technology. 
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The 3.3 protocol sub-chapters explain the LoRaWAN protocol, how MQTT works, and how 

the payload can be encoded with the Cayenne Low Power Payload protocol so that the 

back-end system can understand what the data received is. 

The chapters 3.4, 3.5 and 3.6 explain the different components in the back-end system, 

what they are and how they are connected to create a complete back-end system. 

Chapter 3.4 covers the components needed for the LoRaWAN back-end part. The 

chapters 3.5 and 3.6 are about Telegraf and InfluxDB describe how these components 

work with the regards to data sourcing, storage, and visualisation. 

The measuring of ultra-low temperatures and technology for such measurements are 

covered in chapter 3.7. The thermocouple was the chosen method to measure the ultra-

low temperatures that Pfizer's vaccine requires, after being evaluated against some other 

methods. 
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3.1 OSI-model 

An introduction of the Open Systems Interconnection (OSI) 

model is provided here and used as a reference point 

throughout the theory and implementation chapter of this 

report. 

The OSI-model is a reference model used in data 

communication. The model is defined by the International 

Organization for Standardization (ISO), and it represents 

the building blocks of a network communication system. 

The model consists of seven layers: application, 

presentation, session, transport, network, data link and 

the physical. 

Application layer: Refers to the end user layer with high-

level APIs including resource sharing and remote file 

access. Examples: HTTP DNS and FTP. 

Presentation layer: The data translator for the network. Its 

job is to ensure that the data sent from one application 

layer is readable by the receivers’ application layer. 

Session layer: Services contains mechanisms for managing 

communication sessions between end-users. For example, opening, closing, and 

managing a semi-permanent dialogue. 

Transport layer: Provides a host-to-host server between application servers. Examples on 

services included connection-oriented communication, flow control and multiplexing. 

Examples are TCP/IP and UDP. 

Network layer: Provides packet forwarding systems like routing. Its functionality includes 

connectionless communication, host addressing, message forwarding etc. 

Data Link layer: Refers to the data transfers between network entities. This may also 

include error detection and error correction. 

Figure 5: OSI-model [8] 
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Physical layer: The lowest layer in the OSI-model. Refers to the actual physical mediums 

that the signal is sent through. [8]  

 

3.2 LoRa  

LoRa is a wireless transmitting system that uses radio waves for communication between  

end device and gateway. LoRa is a spread spectrum modulation technique derived from 

the Chirp Spread Spectrum technique (CSS) and is purely a physical layer implementation, 

as defined by the OSI-model. LoRa is a wireless transmitting system that uses radio waves 

for communication between end device and gateway. The LoRa technology provides a 

trade-off between sensitivity and data rate. This is described as the spreading factor, 

where a low spreading factor increases the data rate while lowering the reception 

sensitivity and vice versa. This allows an adaptive optimization for LoRa-devices where 

the goal is to preserve end node battery life. [9]  

 

3.2.1 LoRa specifications 

The LoRa technology operates in the license free ISM band. This increases availability for 

developers and users to design and implement LoRa technology for their systems without 

a license cost. Traffic regulations on these license free bands are a necessity, and in 

Europe, this is done by the ETSI (European Telecommunications Standards Institute). 

Mainly targeting regulation of duty cycle and maximum power transmitted. 

 

3.2.2 LoRa Modulation 

Lora technology uses a modulation technique called Chirp Spreading Spectrum. To fully 

understand the motivation behind developing the LoRa modulation technique, some 

extra theory about the Shannon - Hartley Theorem and Spread Spectrum principles is 

provided in appendix 1. Mainly the LoRa modulation technique provides strong resistance 

against interference and can reach far with low power. The standard preamble of a LoRa-

signal consists of 8 symbols, consisting of 6 up-chirps and 2 down-chirps. This is followed 
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by the data of the signal [10]. An example of a modulated LoRa-signal is in the figure 

below.  

 

 

Figure 6: Example of a LoRa-signal [11] 

 

3.2.2.1 Chirp Spread Spectrum  

Chirp Spread Spectrum (CSS) is a modulation technique that is commonly used in sonar 

and radar technology. "Chirp" stands for Compressed High Intensity Radar Pulse and is a 

simple signal with constant amplitude that varies in frequency. A up-chirp goes from a 

low frequency which increases at a constant rate to a high frequency as seen in the figure 

below. A down-chirp goes from high to low. [12] 

 

Figure 7: Chirp Signal [9] 
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3.3 Protocols 

 

Figure 8 Protocols used in project implementation [5]. 

This project relies on three main protocols. These are LoRaWAN, Message Queuing 

Telemetry Transport (MQTT) and Cayenne Low Power Payload (LPP). LoRaWAN is used all 

the way from the end device to the application server. MQTT is used internally in the 

ChirpStack server system implementation. Here MQTT is used for transporting data from 

the gateway bridge to the network server and from the application server to an InfluxDB 

database via Telegraf. The data that the end device is transmitting is constructed in an 

array that is created using the LPP format. The three protocols are presented in the 

following chapters. 
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3.3.1 LoRaWAN 

 

Figure 9 LoRaWAN Logo [13] 

 

3.3.1.1 What is LoRaWAN 

Long Range Wide Area Network (LoRaWAN) technology is an open network protocol that 

uses LoRa as its physical layer and is used for device administration and communication. It 

was designed to allow secure bi-directional communication between low-powered 

devices and internet-connected applications over long-range wireless connections. The 

protocol is standardized and maintained by the LoRa alliance, which is an open 

association of collaborating members.  

 

Figure 10 LoRaWAN technology stack [9] 

The LoRaWAN layer in "Figure 10 LoRaWAN technology stack" which includes the MAC 

layer, and the different classes of end devices defines the communication protocol and 

system architecture for the network. In reference to "Figure 5: OSI-model [8] " the 

LoRaWAN layer from the technology stack can be mapped to the data link layer and the 

Network layer, which is the second and third layer, respectively. [9] [14] 
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3.3.1.2 LoRaWAN function and network elements 

 

Figure 11 Typical LoRaWAN network implementation [9] 

The figure above shows a typical LoRaWAN network implementation and consists of end 

nodes, gateways, a network server, a join server, and an application server. In a typical 

LoRaWAN network, nodes are not linked to a specific gateway, instead the transmitted 

data is received by multiple gateways. The data will then go through a redundancy check 

where the incorrect data will be dropped. Then each of the gateways will forward the 

correct received data to the network server via Internet. A critical function for moving 

nodes is that there is no need for handover from gateway to gateway. [14] 

 

3.3.1.2.1 End device 

A LoRaWAN-enabled end node can be an actuator or sensor and is connected wirelessly 

to a LoRaWAN network through LoRa RF modulation via gateways. End devices are often 

an autonomous battery powered device that controls physical objects like a water valve 

or reads environmental data such as temperature and humidity.  
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When manufactured, the devices are assigned unique identifiers that is used to 

administer and activate the device. This is done to warrant secure transport of data 

packets over both private and public networks. [9] 

Device classes 

End devices in a LoRaWAN network can operate in three classes. The classes specify how 

a device communicates with the network. In this project class A was implemented, but all 

classes are described. All devices need to support Class A. Class B devices will have to 

support both Class A and Class B, and a Class C device needs to support all three classes. 

[9]  

 

Figure 12 Device classes [14] 

Class A 

Class A devices spends most of its time in idle state. The device wakes up to initiate an 

uplink and transmits the data if there is any change in whatever the device is set to 

monitor. It will then listen to a response from the network in a short receive window of 

around one second. It will go back to idle state for a brief period if it does not receive a 

downlink, waking up shortly after to again listen for a response. if there is still no 

response, the device will go back to idle state until it has new information to report back. 

[9] 
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Class B 

Class B builds on Class A making it possible to provide regularly scheduled receive 

windows as well as having the ones from whenever a Class A uplink is sent. For the 

communication of Class B to work, a beaconing prosses is required. The beaconing 

process is that the network periodically broadcast a time-synchronized beacon to end 

devices so they can align their internal timing reference. The end devices can open 

receive windows periodically based on the timing reference of the beacon. This requires 

that the gateways in the network have a built-in GPS timing source, to ensure that they 

will be synchronized to the precise beacon timing. [9] 

 

Class C 

Class C devices are always “on” as they are main powered, meaning they will always listen 

for downlink messages, except for when they are transmitting an uplink. This results in 

low latency for communication between the server and the device. It also makes use of 

the same receive windows as Class A but will not stop the second window until it sends 

new information to the server. [9] 

 

3.3.1.2.2 Gateway 

The gateway receives messages from any end device within reachable distance and 

forwards the received data to the LoRaWAN network server (LNS). The gateway is 

connected to the LNS through an IP backbone link. Since end devices can be served by 

multiple gateways, all uplink data sent by an end device will be received by all the 

gateways accessible. This notably reduces the error rate of data packets and will both 

allow low-cost geolocation and reduce battery consumption for mobile sensors.  

IP traffic to the network server from a gateway can be backhauled trough either Ethernet, 

Wi-Fi, or cellular connection. LoRaWAN gateways can be looked at as LoRa radio message 

forwarders as it only operates on the physical layer. They check the integrity of the 

received data and if the cyclic redundancy check (CRC) is incorrect, the message will be 

dropped. And if its correct, the gateway will forward the message to the LNS alongside 

some metadata such as the received signal strength indicator (RSSI) and an optional 

timestamp. A gateway will without any interpretation execute the transmission request 
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for LoRaWAN downlinks. The LNS will perform data de-duplication and delete all copies if 

multiple gateways receive messages from the same end device. The network usually 

selects the gateway that received the message with the best RSSI since that gateway is 

most likely the closest to the end device. [9] [15] 

 

3.3.1.2.3 Network server 

A LoRaWAN network server manages the entire network and to adapt to new changes, it 

will dynamically control the network parameters. It will also establish secure connections 

that is encrypted with 128-bit Advanced Encryption Standard (AES) for end-to-end data, 

which is the encryption standard used in LoRaWAN. The LNS will ensure both the integrity 

of every message as well as the authenticity of all the sensors on the network. [9] [15] 

 

Some features all LoRaWAN networks have in common: 

• Address checking for devices. 

• Frame counter management and authentication. 

• Adapting data rates. 

• Responding to MAC layer requests from devices. 

• Acknowledging received messages. 

• Forwarding Join-requests and accepts to the join server and devices.  

• Forwarding uplink payloads to the right application servers. 

• Queuing downlink payloads from the application servers to the connected devices. 

[9] 

 

3.3.1.2.4 Application server 

The application server’s responsibility is to securely manage, handle and interpret sensor 

data, and they will also generate the application layer downlink payloads for the end 

nodes connected to the network. [9] 
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3.3.1.2.5 Join server 

A join server manages over-the-air-activation (OTAA) processes for the end devices 

requesting to join the server. The join server processes the frames of uplink join-requests 

and is generating the join-accept frames. It decides what application server an end device 

should be connected to through signaling the LNS and it also performs the derivation of 

the application and network session key encryption. The join server then communicates 

the device application session key to the application server and network session key to 

the network server. [9] 

For every end device, the following information must be contained from the join server:  

• DevEUI (end device serial unique identifier) 

• AppSkey (Application session key) 

• NwkSkey (Network session key) 

• Application server identifier 

• End device service profile  

[9] 

 

3.3.1.2.6 Security 

Two layers is utilized for security in LoRaWAN, one for the network that ensures 

authenticity of the node and one for the application that makes sure the network does 

not gain access to the end users application data. [9] [15] 

 

The two layers of encryption defined in LoRaWAN: 

• A 128-bit Network session key that is shared between the end device and the 

network server. 

• A 128-bit Application session key that is shared at the application layer for end-to-

end data. 

[15] 
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Figure 13 Secure transmission of data packets [9] 

 

Data in a LoRaWAN network is encrypted twice, once by the node and once more by the 

LoRaWAN protocol. The data will only be sent to the gateways after these encryptions. 

After the gateway then forwards the data to the LNS, the network will then use the 

network session key and decrypt the LoRaWAN data. This data will then be sent to the 

application server which uses the application session key to decrypt the sensor data. This 

is important to make sure other gateways in the proximity do not gain access to other 

people’s data since end devices send data to all nearby gateways within proximity. [9] 

[15] 

At the start of operation, devices need to be activated and joining the network to ensure 

good quality of service, billing, and security. It is two types of activation specified in 

LoRaWAN, it is over-the-air-activation (OTAA) and activation by personalization (ABP). 

OTAA is the preferred one. [9] 

For OTAA, the network (join server) and the joining device will exchange a 128-bit 

Application key (AppKey). This AppKey will be used to create a Message Integrity Code 

(MIC) when the device sends a join-request, the server will then check the AppKey with 

the MIC. And if this check is valid, the server will create two new keys, the 128-bit 

AppSkey and the 128-bit NwkSkey. The join server will send these keys back to the device 

making use of the AppKey as an encryption key and the device will install the two session 

keys as soon as they are received. The AppSkey is used for end-to-end encryption all the 
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way from the application server to the end device and the NwkSkey is used to warrant 

the integrity of a message from the end device to the LNS. [9] [15] 

ABP is the second method to join the network and will directly link the device to a specific 

network. With this method, the user will insert the device session key which may lead to 

security issues. [15] 

 

ABP OTAA 

A less secure and simplified 

commissioning process 

The essential provisioning parameters is 

generated autonomously by the 

manufacturers 

At fabrication, keys and IDs are 

personalized  

Can renew secure keys routinely 

Skips the join procedure which makes 

devices functional immediately after 

powering up 

Can securely and dynamically switch 

networks as it can store multiple identities 

Since the NetID is a part of the device 

network address, the device is bound to a 

specific network 

High-grade security with tamper-proof 

options 

Table 1 A comparison of the activation types OTAA and ABP [9] 
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3.3.1.2.7 Frame structure 

 

Figure 14 LoRa and LoRaWAN frame format [16] 

The physical layer frame starts with a preamble, which is responsible for the 

synchronization function and defines the modulation scheme for the packet and usually 

has a duration around 12.25 ms. After the preamble comes the Header and a Header CRC, 

these two together are 20-bits long. The header contains information such as payload 

length and if the payload 16-bit CRC is present. The payload CRC is only present in uplink 

frames for LoRa networks. And as seen from the figure above, the PHY payload contains 

the MAC layer frames.  

The frames in the MAC layer are the MAC Header, the MAC payload, and the Message 

Integrity Control (MIC). The MAC Header is 1-byte and defines the message type and the 

protocol version. Examples of this is whether it should be acknowledges or not, or if it is 

transmitted in downlink or uplink. If an end device is in a join process, the payload may be 

switched out with a join request or join accept message. The MAC payload contains the 

application layer frames. To compute the 4-byte MIC value, both the MAC payload and 

the MAC Header are used in its entirety with a network session key. The use of the MIC 

value is to authenticate the end device as well as preventing any forgery of messages. 

The application layer consists of the Frame Header, Frame Port and Frame payload. The 

information in the Frame header which is between 7 to 22 bytes are the device address, 



28 

 

Frame control, Frame counter and Frame options. Device address is 4 bytes and is in two 

parts where the 8 first bits identify the network, and the other bits are dynamically 

assigned during the join- and identifying process. Followed is the 1-byte Frame control 

used for network control information. The Frame counter is 2 bytes large and used for 

sequence numbering and last in the Frame Header is the Frame options which is used to 

send commands to change transmission power or data rate and is between 0 to 15 bytes. 

The Frame ports value is decided by the application type. The value of a Frame payload is 

encrypted with an AppSkey. [16] 

 

3.3.1.3 Advantages of LoRaWAN 

• An open standard: LoRaWAN is an open standard technology which allows for bi-

directional communication and adaptive data rate. The reasoning for it being an 

open standard is to get wide deployment and acceptance. 

• Open frequencies and no licensing: LoRaWAN operate within the frequency 

spectrums of 433Mhz, 868Mhz and 915Mhz which is available worldwide, is free 

to use and requires no licensing. In Norway, the 868Mhz frequency band is the 

standard but the 433Mhz frequency band is also available if needed.  

• Low power consumption: The power consumption of end devices is low since the 

end devices in a LoRaWAN network are asynchronous and only communicate 

whenever they have data ready to be sent. This protocol type is often referred to 

as the Aloha method. 

• Security: Security is one of the main focus points for LoRaWAN, that is why two-

layer security are utilized. One layer is for the network while the second layer is 

for the application where AES encryption is used. 

• MQTT compliant: As the gateway needs to forward the data from the end devices 

to the network server it is dependent on a way to communicate with the server. 

And in many cases MQTT is the selected protocol for this task and is a publish-

subscribe protocol that transports messages between the devices.  

• The LoRa Alliance and global reach: One big advantage of LoRaWAN is that it has a 

lot of backing in the LoRa Alliance which has existed since 2015 and consist of 
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more than 500 members worldwide. The members include some technology 

leaders such as Cisco, HP, IBM and Semtech as well as some leading product 

manufacturers such as Bosch and Schneider and many other. 

• A single gateway is designed to handle thousands of end devices. 

• Wide covered area with its long range as it can reach up to 15km outdoors, this is 

seen as both an advantage and a disadvantage. 

• Fully bi-directional communication. 

[9] [14] [15] 

 

3.3.1.4 Limitations of LoRaWAN 

• Signals may be unstable in urban areas due to densification of LoRaWAN 

networks. This may be a problem both for open frequencies as you may get 

interference and low data rate due to heavy traffic on the frequency and because 

the end devices send information to all the gateways in its radius.  

• It is not made for large data loads as the payloads are limited to 100 bytes and the 

data rate is low ranging between 250bps to 50kbps. 

• While the 863-868 MHz frequency band in Norway is open for use, there is 

limitations to effect, occupied bandwidth and transmission time. 

[9] [15] [17] 
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3.3.2 Message queuing telemetry transport protocol (MQTT) 

 

Figure 15. MQTT logo [18] 

3.3.2.1 What is MQTT? 

3.3.2.1.1 General 

“Message Queuing Telemetry Transport” is a protocol used for Internet of Things (IoT) 

and machine to machine (M2M). MQTT is located in the application layer in the OSI-

model (See "Figure 5: OSI-model [8]") [19]. It is a messaging protocol that is designed in a 

way that requires few resources. It is open, simple, and easy to implement which makes it 

ideal for many situations. The design is also prepared for operating on unreliable 

networks, networks with low bandwidth and networks with low response time. The 

design principles of MQTT are about minimizing the network requirements of bandwidth 

and device resources, whilst still proving reliable with a certain level of deliverance. This 

makes it a reliable protocol where there is limited bandwidth, battery capacity or power 

consumption. [18] [20] 

MQTT was invented by Dr. Andy Standford-Clark of IBM, and Arlen Nipper of Arcom (now 

Eurotech), in 1999. The protocol is, since its release, used by a wide variety of industries. 

The current version of MQTT is version 5 (v5.0) which is an open OASIS-standard. MQTT 

v3.1.1 is also a certified ISO-standard. [18] [20] 

 

3.3.2.1.2 MQTT v3.1.1 and MQTT v5 

MQTT v3.1.1 was the first OASIS standard version of MQTT, and it was also standardized 

as ISO/IEC 20922:2016. With the release of MQTT v5 there was added several new 

features to MQTT while keeping most of the core in place. These major functional 

objectives are: 

• Enhancements to scalability and large-scale systems 
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• Improved error reporting 

• Formalize common patterns including user capability discovery and request 

response. 

• Extensibility mechanisms including user properties 

• Performance improvements and support for small clients 

[21]  

3.3.2.2 How does MQTT work? 

3.3.2.2.1 The publish and subscribe model. 

 

Figure 16. The MQTT publish and subscribe model for IoT sensors. [22]  

 

A key feature of the MQTT protocol is its publish and subscribe model, where it decouples 

the publisher and consumer of data. In the MQTT protocol there is defined two types of 

entities in the network, a message server (formerly known as broker) and a number of 

clients. The server receives and routes messages from the clients to the correct 

destination. A client is anything that can interact with the server to send and receive 

messages. A client could be anything between an IoT sensor in the field or an application 

that process data. 

This is done in a certain way: 

1. The client attempts to connect to the server. Where it can subscribe to any kind of 
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“message-topic” from the server. This connection can either use TCP/IP connection for 

the normal messages or it can use the Transport Layer Security (TLS) connection for more 

sensitive messages. 

2. The client will then publish messages under a certain topic by sending both the 

message and the topic to the server. 

3. The server will then forward the message to every client that has subscribed to the 

given topic. 

Messages sent with MQTT is organized by topic, which gives application developers the 

possibility to state that only certain clients can interact with certain messages. As an 

example, sensors will publish readings under the topic “sensor_data” and subscribe to the 

topic “config_change”. Then applications that process data and save sensor data into a 

backend database will subscribe to the topic “sensor_data”. An admin console application 

could receive system admin’s commands to adjust sensor configurations, such as 

sensitivity and sample frequency, and then publish those changes to the "config_change" 

topic. [22] 

 

3.3.2.2.2 Understanding the MQTT protocol 

The MQTT protocol is a wire protocol, which specifies how data bytes should be arranged 

and transferred over the TCP/IP network [22]. Developers do not need to understand the 

wire protocol, but rather need to know that each message has a command and data 

payload. Those commands specify the message type (for example, a connect or subscribe 

message). Every MQTT library and tools provide ways to operate those messages with 

simple course of action directly and can automatically inhabit/fill some required fields, 

such as message and client-ID. 

As described in "3.3.2.2.1 The publish and subscribe model., the client will have to 

connect to the server first by dispatching a CONNECT message. The CONNECT message 

will request to set up a connection from the client to the server. The CONNECT message 

has the following content parameters. 

[22] 
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Parameter Description 

cleanSession This flag specifies whether the connection is persistent or not. A 

persistent session stores all the subscriptions and potentially missed 

messages in the server 

username The authentication details of the server 

password The authentication details of the server 

lastWillTopic If the connection is dropped unexpectedly, the server will 

automatically publish a “last will” message to a topic 

lastWillQos The “last will” message’s QoS 

lastWillMessage The “last will” message itself. 

keepAlive The time interval the client needs to ping the server to keep a 

connection alive 

Table 2. CONNECT message parameters [22] 

The client will obtain a CONNACK message from the server. The CONNACK message has 

the following parameters. 

Parameter Description 

sessionPresent Indicates whether the connection already has a persistent session. 

Which is if the connection already has subscribed topics and will 

receive the delivery of missed messages. 

returnCode 0 indicates success. Other values identify the cause of the failure 

Table 3. CONNACK message parameters [22] 

After an established connection, the client sends one or more SUBSCRIBE messages to the 

server, where it indicates which topics it wants to receive messages from. That message 

can have one or multiple repeats of the following parameters. 

Parameters  Description  

QoS  The QoS (quality of service) flag indicated how consistently the message 

under this topic needs to be delivered to the clients. 

It has certain values: 

Value 0: Unreliable, the message will be delivered almost instantly, 

where the client will miss the message if its unavailable 
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Value 1: the message should be delivered at least once. 

Value 2: the message should be delivered exactly once 

topic A topic to subscribe to. A topic can have multiple levels separated by the 

slash character. 

Table 4. SUBSCRIBE message parameters [22] 

When a client has subscribed to a topic, the server will return a SUBACK message with 

one or more returnCode parameters. 

Parameter Description 

returnCode Every topic in the subscribe command has a return code. The value of the 

return code is: 

Value 0-2: Success with the corresponding QoS level  

Value 128: Failure 

Table 5. SUBACK message parameters [22] 

Corresponding to the SUBSCRIBE message, the clients can also UNSUBSCRIBE from one or 

more topics. 

Parameter Description  

topic Can be repeated for multiple topics 

Table 6. UNSUBSCRIBE message parameters [22] 

The client can send PUBLISH messages to the server. The message contains a topic and 

payload. The message is then forwarded to all the clients that has subscribed to that 

topic. [22] 

Parameter Description  

topicName Decides what topic the message is published under. 

QoS The quality-of-service level of the message delivery. 

retainFlag Indicates whether the server will hold on to the message as the last know 

message of the topic. 

payload The actual data in the message. Whether it’s a text string or binary data 

Table 7. PUBLISH message parameters [22] 

[22] 
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3.3.2.2.3 Structure of an MQTT control packet 

The MQTT protocol works by exchanging series of MQTT Control Packets in a certain way. 

This section will describe the format of these packets.  

A MQTT Control Packet consists of up to three parts, which are always in the following 

order: Fixed header, which is present in every control packet. Variable Header, which is 

present in some control packets. And last the payload, which is present in some control 

packets.  

Fixed Header 

Each MQTT Control Packet contains a Fixed Header as shown below. 

Bit 7 6 5 4 3 2 1 0 

Byte 1 MQTT Control Packet type Flags specific to each MQTT 

Control Packet type 

Byte 2 Remaining length 

Table 8. Structure of an MQTT Control Packet [21] 

MQTT Control packet type 

Positioned in byte 1 of the fixed header, bits 7-4 

Name  Value  Direction of flow Description  

Reserved 0 Forbidden Reserved 

CONNECT 1 Client to Server Connection request 

CONNACK 2 Server to Client Connect 

acknowledgement 

PUBLISH 3 Client to Server or Server to Client Publish message 

PUBACK 4 Client to Server or Server to Client Publish acknowledgement 

(QoS 1) 

PUBREC 5 Client to Server or Server to Client Publish received (QoS 2 

delivery part 1) 

PUBREL 6 Client to Server or Server to Client Publish release (QoS 2 

Delivery part 2) 
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PUBCOMP 7 Client to Server or Server to Client Publish complete (QoS 2 

Delivery part 3) 

SUBSCRIBE 8 Client to Server Subscribe request 

SUBACK 9 Server to Client Subscribe 

acknowledgement 

UNSUBSCRIBE 10 Client to Server Unsubscribe request 

UNSUBACK 11 Server to Client Unsubscribe 

acknowledgement 

PINGREQ 12 Client to Server PING request 

PINGRESP 13 Server to Client PING response 

DISCONNECT 14 Client to Server or Server to Client Disconnect notification 

AUTH 15 Client to Server or Server to Client Authentication exchange 

Table 9. MQTT Control Packet types [21] 

Flags 

Bit 3 to 0 in the fixed header contains flags that is specific for every MQTT control packet. 

Flags that are linked to the Publish-Control Packet from MQTT v5 are set to decide three 

different parameters, DUP, QoS and Retain. Flags from the other types of Control Packets 

are reserved for use in the future and need to be set to the value that is specified in the 

documentation.  

DUP: If the DUP flag is set to 0 it indicates that this is the first case of the client or server is 

trying to send the Control Packet. If the flag is set to 1 it indicates that it could be a new 

attempt to send a Control Packet that was attempted sent earlier. 

QoS: This flag decides what Quality of Service level is present.  

Retain: If the Retain flag is set to 1 in a publish control packet that the client is sending to 

the server, then the server needs to change pre-existing messages that is kept for the 

applied topic and save the message so it can be delivered to future subscribers of the 

topic. If the Retain flag is set to 0 in a control packet that is published, then the server will 

not keep the message and it will not change the pre-existing message. [21] 
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Variable Header/Remaining length 

The Remaining Length is a Variable Byte Integer that represent the number of bytes 

remaining within the current Control Packet, including data in the Variable Header itself 

and the Payload. However, it does not include the bytes used to encode the Remaining 

Length itself. The packet size is the total number of bytes in a Control Packet, which is 

equal to the total length of the Fixed Header and the Remaining Length.  

Not every control packet includes a variable header, and the content is dependent on 

what kind of packet it is, but the packet-identification is common for different types of 

packets. The header includes two fields, those being packet-identification and properties. 

The Packet Identifier is often included in many of the MQTT Control Packet types and 

includes a Two Byte Integer Packet Identifier field. These control packets are PUBLISH 

where QoS > 0, PUBACK, PUBREC, PUBREL, PUBCOMP, SUBSCRIBE, SUBACK, 

UNSUBSCRIBE and UNSUBACK. 

The field for properties consists of an identifier that defines the use-case of the packet 

and the datatype, followed by a value. [19] 

Payload 

Some MQTT control packets contain a payload as the last part of the packet. This is the 

application message. Control packets that contain a payload is listed below. 

MQTT Control Packet Payload 

CONNECT Required 

CONNACK None 

PUBLISH Optional 

PUBACK None 

PUBREC None 

PUBREL None 

PUBCOMP None 

SUBSCRIBE Required 

SUBACK Required 

UNSUBSCRIBE Required 
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UNSUBACK Required 

PINGREQ None 

PINGRESP None 

DISCONNECT None 

AUTH None 

Table 10. MQTT Control Packets that contain a Payload [21] 

[19] 

 

3.3.2.2.4 Quality of Service (QOS) 

MQTT has three different levels/values of Quality of Service. Those levels are as follow: 

Value 0 – The message is delivered after the capability of the network. No response is 

sent from the receiver to the sender and there are no attempts from the sender to send 

the message again to the client. The message will either get to the receiver once, or not 

at all. 

Value 1 – Ensures that the message is received at least once. 

Value 2 – The highest Quality of Service level. Which is used when neither loss nor 

duplication are acceptable.  

For example, MQTT messages that defines commands that enable certain operations, 

value 2 would be the way to go. This would secure that the command gets through, and 

that the operation will not be enabled more than it is supposed to (duplicates).  

[21] 

 

3.3.2.2.5 Security 

For clients and units connected to a network, security is one of the most important 

factors, therefore also for MQTT. The MQTT-server is recommended to have a system for 

authentication of clients and users, with a client-ID, certificates, and passwords. It is also 

recommended that that all communication is encrypted, and that there are methods to 
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uncover attempts at uncertified connections to the MQTT-system, or in any other way of 

trying to manipulate the dataflow between clients and servers. 

MQTT can use SSL/TLS to secure communication between units and give the opportunity 

for encryption. TLS and SSL are two protocols for secure communication and is located in 

the TCP/IP- layer. It is possible to utilize TLS/SSL together with other reliable 

communication safety- protocols, but not with unreliable like for example UDP. TLS v1.0 

was released in 1999 and were built on SSL v3.0. TLS v1.3 is from 2018 and is the newest 

version of the TLS protocol. There is two main parts of TLS, to reach a secure connection 

there is one “handshake” protocol and one “record” protocol. The handshake protocol is 

when the client and server is authenticating by sharing certificates and agreeing on 

encryption keys. The record protocol takes the data that is going to be sent, fragmenting 

them in smaller parts then encrypting these with help from the encryption keys, and lastly 

sending the data. In the opposite end the data is decrypted and put back together. [23] 

The different ports MQTT is communication with, depending on if its unencrypted, 

encrypted or with encryption and certificates: 

1883: MQTT, unencrypted 

8883: MQTT, encrypted 

8884: MQTT, encrypted, client certificate required 

[23] 

 

3.3.2.3 Advantages of MQTT 

• Packet agnostic: Any type of data can be transferred in the payload carried by the 

packet. As mentioned earlier the data could be text or binary. As long as the 

receiving end know how to interpret the data it does not matter. 

• Reliability: There are several Quality of Service values that can be enabled to 

make sure the message is delivered. 

• Scalability: The publish and subscribe model scales well in a power efficient way. 
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• Decoupled design: There are several elements to the design that decouple the 

device and subscribing server, which results in a more though communication 

plan. 

• Time: A device can publish its data regardless of state of the subscribing server. 

Which enables the subscribing server to connect and receive the data whenever it 

is able to. This decouples both ends of the communication on a time basis. This 

allows devices to remain in a sleepy state while not worrying about if the 

subscriber is able to receive the data when it wakes up to communicate. 

• Space (delivery details): The publisher needs to know the server IP address and 

how to communicate with it, but it does however not need to know anything 

about the subscribers, nor do the subscribers need to know anything about the 

network connection details of the publisher. This makes for smaller 

communication overheads on the device side. It also frees both ends to be able to 

operate independently. Subscribers can be upgraded and changed, and additional 

subscribers can be added without any change needed on the publishing device 

end. 

• Synchronizing: Neither side must pause what they are doing to communicate or 

receive a message. This process is asynchronous and there is no need to interrupt 

any work in progress to publish a message. 

• Security: MQTT offers the option of TLS/SSL encryption of communication 

• Bidirectional: A device can be both a publisher and a subscriber. In this way, it can 

receive commands by subscribing to a topic on the server. It could also receive 

data from other devices that could be input into the data it publishes. 

• Maturity: MQTT was invented by IBM with the first protocol draft in 1999. MQTT 

was released royalty free in 2010 and has since then been donated as an open 

source project to the Eclipse foundation. It is in use by millions of connected 

products today. 

[24] 
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3.3.2.4 Limitations of MQTT 

• Operating over TCP: TCP was designed for devices with more memory and 

processing power than many lightweight, power constrained IoT devices. TCP 

requires more “handshakes” to be able to set up communication links before any 

messages can be exchanged. That will increase wake-up and communication 

times, which again will affect long term battery consumption. TCP connected 

devices tend to keep sockets open for each other with a persistent session. This 

adds to power and memory requirements. 

• Centralized server can limit scale: The server can affect a scalability since there is 

need for additional overheads for each device connected to the server. The 

network can only grow as large as the server can support. This puts limits on 

expansion for each hub and spoke group. 

• Server single point of failure: The server can also be a single point of failure in the 

network. Commonly the server is a device that is plugged into a wall socket with 

several battery powered publishing devices. If there is a power failure the server 

will be offline whilst the publishing devices will still be operating, rendering the 

network useless until the power is restored. 

• Security: By default, MQTT is unencrypted. This makes it natively unsecure and 

requires additional steps and some overhead absorption to make sure TLS/SSL is 

implemented.  

[24] 
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3.3.2.5 Mosquitto – an open source MQTT server 

 

 

Figure 17. Mosquitto logo [25] 

Mosquitto is a message server for MQTT protocols v.5.0 and v.3.1.1. It is open source, 

requires few resources and can be utilized on all devices from microcontrollers to full 

servers. Mosquitto uses a C-library for implementing MQTT clients. [25]  

The MQTT server Mosquitto is a vital part, as it handles almost all the communication in 

the back-end system.  

 

Figure 18 Mosquitto working as MQTT server 

Mosquitto allows research to be done directly related to the MQTT-protocol, such as 

performance and investigating the use of authenticators. It also supports other research 

activities, like a block that is useful when larger systems are being built, and it is also 

evaluated for use in smart cities. [26] 
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3.3.5 Cayenne Low Power Payload (LPP) 

The Cayenne Low Power Payload (LPP) provides a structured way of transmitting data. 

This protocol is used in the transmission of payload data in the project implementation in 

chapter ”4.2.2 Prototype 2”. Using this protocol provides the back-end with the capability 

to ascertain what kind of data the payload contains. The protocol is compliant with 

payload size restrictions and can be lowered down to 11 bytes. LPP allows for 

transmitting multiple sensor data at one time. It is also possible to send different sensor 

data in different frames. This is done by prefixing each sensor data with two bytes. These 

two bytes are: 

▪ The data channel, which uniquely identifies each sensor in a device across frames. 

For example, “outdoor sensor” or any sensor defined to belong to a specific 

channel. 

▪ Data type, which specifies the type of data that is being transmitted. For example: 

temperature, humidity, pressure or other data types. 

The structure of the payload is as follows: 

1 byte 1 byte N bytes 1 byte 1 byte M bytes Continues 

Data 1 

Channel 

Data 1 

Data type 

Data 1 

Data 

Data 2 

Channel 

Data 2 

Data type 

Data 2 

Data 

→ 

Table 11 Cayenne Low Power Payload structure 

Each data type can use one or more bytes for transporting data. For example, the payload 

can look like this: 

1 Byte 1 Byte 2 bytes 1 byte 1 byte 1 byte 

Data 

channel 1 

Temperature 

sensor 

Data Data 

channel 4 

Humidity 

sensor 

Data 

0x01 0x67 2 bytes data 0x4 0x68 1 byte data 

Table 12 Example of payload structure 

Here the temperature sensor uses 2 bytes of data, because this is specified in the LPP. 

The different identifiers for the data types are specified to conform to IPSO Alliance Smart 

Objects Guidelines [27]. Here each data type is identified with an Object ID. These object 
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IDs have been converted in the LPP to fit in a single byte. The way the LPP defines this 

conversion is “LPP_DATA_TYPE = IPSO_OBJECT_ID – 3200”. [28] 

The following table specifies these LPP data types: 

Type IPSO LPP Hex 
Data 

Size 
Data Resolution per bit 

Digital Input 3200 0 0 1 1 

Digital Output 3201 1 1 1 1 

Analog Input 3202 2 2 2 0.01 Signed 

Analog Output 3203 3 3 2 0.01 Signed 

Illuminance 

Sensor 
3301 101 65 2 1 Lux Unsigned MSB 

Presence Sensor 3302 102 66 1 1 

Temperature 

Sensor 
3303 103 67 2 0.1 °C Signed MSB 

Humidity Sensor 3304 104 68 1 0.5 % Unsigned 

Accelerometer 3313 113 71 6 0.001 G Signed MSB per axis 

Barometer 3315 115 73 2 0.1 hPa Unsigned MSB 

Gyrometer 3334 134 86 6 0.01 °/s Signed MSB per axis 

GPS Location 3336 136 88 9 

Latitude : 0.0001 ° Signed MSB 

Longitude : 0.0001 ° Signed MSB 

Altitude : 0.01 meter Signed 

MSB 

Table 13 LPP data types [28] 
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The LPP protocol is understood by both The Things Network (TTN) [29] and ChirpStack 

[30] and is therefore suitable for this project.  

 

3.4 ChirpStack - An open source LoRaWAN server solution 

 

 

Figure 19ChirpStack logo [31] 

 

To get a better understanding of how a LoRaWAN system works behind the gateway (the 

back-end system), it is relevant to look at a LoRaWAN server system. This chapter will 

look at the ChirpStack LoRaWAN server stack. Chapter “4.3” will look at a practical 

implementation. The ChirpStack project is open source [32] and supported by a large 

community [33]. The ChirpStack project provides components for LoRaWAN networks. It 

offers a solution which is ready to use. All of its components are also licensed under the 

MIT license and can be used for commercial purposes [32]. 

The application server part has a user-friendly web-based interface for managing devices 

and application programming interfaces (APIs) for integration. The ChirpStack project has 

modular architecture which makes it possible to integrate with other existing 

infrastructures.  

The components of the ChirpStack are: 

• ChirpStack Gateway Bridge: handles the communication with the LoRaWAN 

gateways 

• ChirpStack Network Server: a LoRaWAN network server implementation 

• ChirpStack Application Server: a LoRaWAN application server implementation 
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• ChirpStack Gateway OS: Linux-based OS to run the (full) ChirpStack stack on a 

Raspberry Pi based LoRa gateway  

[32] 

The relation between the components can be viewed in “Figure 20 The ChirpStack 

architecture overview ”. 

 

Figure 20 The ChirpStack architecture overview [34] 

The gateway communicates with the network server via a packet forwarder, the gateway 

bridge and the MQTT protocol. The gateway bridge can be deployed in different ways 

(see chapter “3.4.1.1”) and depending on the type of bridge deployment there are two 

different ways the packet forwarder communicates with the gateway bridge. If the 

gateway bridge is installed on the server, the packet forwarder sends LoRaWAN frames to 

the gateway bridge via the UDP protocol. If the gateway bridge is directly installed on the 

gateway itself the UDP protocol is no longer needed and the UDP communication of 

LoRaWAN frames is replaced by TCP and the MQTT protocol. 

The network server communicates with the application server via gRPC. gRPC is an open 

source Remote Procedure Call (RPC) framework. It connects services in across and across 

data centres [35]. gRPC is not a focus in this thesis. The application server can be 

integrated with several services for storing or processing the data. 
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3.4.1 ChirpStack gateway bridge 

 

Figure 21 Gateway bridge - communicates with gateway and network server via Mosquitto and MQTT [5]. 

The ChirpStack gateway bridge is a part of the ChirpStack LoRaWAN network server stack. 

It sits between the packet forwarder and an MQTT server [34]. The gateway bridge is a 

service that converts LoRa packet forwarding protocols into a data-format which the 

ChirpStack network server uses, either JSON [36] or Protobuf [37]. The gateway bridge 

supports three different packet forwarders. These are ChirpStack Concentratord, Semtech 

UDP Packet Forwarder and Basic Station Packet Forwarder. The gateway in this project 

uses the Semtech UPD packet forwarder. There is also support for integration of other 

services such as MQTT, Google Cloud IoT Core and Azure IoT Hub MQTT bridge.  

[38] 

 

3.4.1.1 Deployment  

There are several different ways in which the ChirpStack gateway bridge can be deployed. 

It can be installed as a single instance, on multiple servers or it can be installed on each 

gateway. In this project, the gateway bridge is deployed as a single instance. For details 

on the other possible methods of deployment, see appendix 2. 
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For a single instance, the ChirpStack gateway bridge is installed on one server and all 

gateways connect to the bridge. This is the easiest way to deploy the bridge, but it is also 

the least secure. This is because of the UDP protocol that most gateways use, does not 

support any authorization and there is no way to check if the data that is received is 

authentic [39]. 

 

3.4.1.5 Dependencies 

ChirpStack gateway bridge uses MQTT for publishing events and receiving commands. 

The bridge requires a MQTT server to be installed, for example by using Mosquitto. Other 

options could work as long as they support MQTT v3.1.1.  

[40] 

 

3.4.2 ChirpStack network server 

 

Figure 22 Network server - part of the system implementation [5]. 

The ChirpStack network server is a LoRaWAN network server, which is responsible for 

managing the network. This means it has several responsibilities. The server has 

knowledge of device activations and handles join-requests when devices want to join the 
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network. The network server is also responsible for de-duplicating data from LoRaWAN 

frames received by LoRa gateways. [41] 

The LoRaWAN frames handled by the network server: 

• Authentication 

• LoRaWAN MAC-layer (and MAC-commands) 

• Communication with the ChirpStack Application Server 

• Scheduling of downlink frames 

[41] 

The network server has a lot of features. The features utilized in this project are device 

activation (OTAA), adaptive data rate (ADR), device classes (class A), device profiles, 

gateway management (gateway location by GPS), LoRaWAN versions (version 1.0.X), 

LoRaWAN regions (EU) and service profile (features for devices). Details on these features 

and the other supported by the network server are covered in appendix 3. 

 

3.4.2.18 ChirpStack network server dependencies 

The network server requires an MQTT server for publishing and receiving application 

payloads. It has the same requirements as the Gateway bridge which requires MQTT 

v3.1.1 or above.  

For handling the gateway data, the ChirpStack network server also requires two different 

types of databases. A PostgreSQL database for gateway data, and a Redis database for 

storing device-session data and non-persistent data, such as distributed keys, 

deduplication sets and meta data. PostgreSQL above v9.5 and Redis above v2.6.0 is 

required. For any installation of the server on Ubuntu or Debian OS, the compliant 

versions are Ubuntu v18.04 and Debian v10.  

[42]  
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3.4.3 ChirpStack application server 

 

Figure 23 The application server part of the system [5]. 

The ChirpStack application server is part of the open source LoRaWAN network server 

stack. It is responsible for the devices in a LoRaWAN infrastructure, handling join requests 

and encryption of application payloads. The application server has a web-based interface 

where it is possible to manage users, organizations, applications, and devices. 

 

Figure 24 This is what the web interface for the application server looks like  
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The application server has integrations with external services via the use of gRPC and 

RESTFUL API [43]. Data from the application server can be sent or received by using MQTT 

or HTTP and it can be written to a InfluxDB database.  

[44] 

The application server has features which are listed in the following chapters. Of these 

features only gateway discovery and firmware update over the air was not used. Gateway 

discovery was not used due to only implementing one gateway, and firmware update 

over the air is only available as an experimental feature [45].  

 

3.4.3.1 Payload encryption and decryption 

The application server handles encryption and decryption of the application payloads. The 

application key for each device and the join-accept when Over The Air Activation (OTAA) 

is used. The payloads will be sent decrypted to the integrated services but are not 

decrypted before the network server. The network server does not have access to these 

payloads.  

[46] 

 

3.4.3.2 User authorization 

The ChirpStack application server makes it possible to grant users global administrative 

rights, making them the admin or assigning them view-only permissions within an 

organization. This makes it possible to run the application server in an environment 

where there are several different user-categories, and where each organization or team 

only have access to their own applications and devices. 

[46] 
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3.4.3.3 Application programming interface (API) 

 

Figure 25 Access to API through the web interface 

For integration with external services the application server provides the use of gRPC and 

RESTFUL API, which has the same functionality as the web interface. 

[46] 

 

3.4.3.4 Gateway discovery 

In networks that contain several gateways it is necessary to test the network for gateway 

coverage. The application server can periodically send out pings through each gateway to 

discover how well these pings are received by other gateways in the same network. This 

way the application server can map out the network. Then the application server can 

display this information as a map in the web-interface. This feature can be enabled 

through configuring the network server. 

[46] 

 

3.4.3.5 Live frame logging 

It is possible to inspect all raw, encrypted LoRaWAN frames per gateway or device. When 

viewing the LoRaWAN frames option in the application server for a gateway or for 
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devices, one can see all frames that pass in real-time. It also allows for inspection of the 

(encrypted) content of each LoRaWAN frame. 

[46] 

 

3.4.3.6 Live event logging 

From the web interface on the application server it is possible to inspect all events 

without the need of an MQTT client or build-integration. From the “live event logs” menu 

option under detailed page for devices, one can see all uplink, acknowledgement, join or 

error events in real-time.  

[46] 

 

3.5 Telegraf 

 

Figure 26 Telegraf used for conveying data from the application server to InfluxDB [5]. 

Telegraf is a server agent for collecting and sending metrics and events from systems, 

databases and IoT sensors. Telegraf is plugin driven, meaning that it allows for new inputs 

and outputs to easily be added. Telegraf is used in this projects implementation for 

sending measurement data from the ChirpStack application server into InfluxDB, via an 

MQTT plugin (see chapter “4.5.1”). 
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Figure 27 Overview of how Telegraf relates to other services [47] 

 

There are many input integrations for various metrics, events, and logs from popular 

systems. The output plugins allow sending metrics and a variety of different datastores, 

services and message queues. Some of these are InfluxDB, Graphite, OpenTSDB, MQTT, 

NSQ and several others. 

[47] 

Key features of Telegraf are: 

▪ It is written in Go. It compiles into a single binary and have no external 

dependencies. 

▪ It has very little memory usage. 

▪ The plugin system allows adding new inputs and outputs for many services, and 

many plugins exist for popular services. 

[48] 
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3.6 InfluxDB 

 

Figure 28 InfluxDB as component in the back-end [5]. 

InfluxDB is a time series platform. Timeseries data means a sequence of data that consists 

of successive measurements made from the same source over a period of time [49].  

InfluxDB comes in three different versions, InfluxDB cloud, InfluxDB Enterprise and 

InfluxDB Open Source. This project implements InfluxDB open source for data storage, 

visualisation, and processing. InfluxDB open source can be used for free. It is different 

from a traditional database as it can handle new types of workloads, millions of data 

points, and hundreds of data sources. Flux, which is the scripting and query engine, is 

designed to transform this timeseries data into information and enable real-time 

decisions. [50] Flux is designed for data scripting, monitoring, and alerting [51]. 

Timeseries data collected is stored in buckets. Each bucket can collect from multiple 

sources. There are no limitations on the number of sources data is sourced from, the 

buckets job is only to store the data. To identify the source of data, a tag can be applied 

for the data points for identification. [52] Buckets have data retention periods, meaning 

each bucket can be defined to hold on to its data for a specified amount of time. The time 

for data retention is calculated from the data timestamp. [53] [54] 

InfluxDB has a web-based user interface that includes a data explorer, dashboard tools 

and script editor. The data explorer can be used to browse through metric and event data 
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collected, and common data transformations ca be applied. [51] Data can be processed 

an analysed using tasks in the InfluxDB task engine. Tasks are scheduled Flux queries to 

input data streams for analyzation, modification and acted upon accordingly. [55] 

The user interface also provides tools for visualizing the data. This is done by creating 

dashboards with cells that have many different types of visualisations, such as band, 

gauge, graph, heatmap, histogram and others. This makes it possible to visualize the data 

in the way that makes the most sense for the application. [56] [57] 

Data can be monitored, and alerts can be sent based on checks defined in a query. A 

check queries data and assigns a status with a level argument based on the specific 

conditions. Notification rules can be assigned, and notifications can then be created 

based on these rules. [58] The notification rules send a message to a notification endpoint 

[59]. The possible notification endpoints are Slack, PagerDuty and a HTTP endpoint [60]. It 

is also possible to set up a task for sending an email alert [61]. 

 

3.7 Measuring ultra-low temperatures 

In this chapter, the measurement of ultra-low temperatures (ULT) will be looked at since 

the vaccines has storage demands of -70°C with a margin of ±10°C. There are several 

methods to ensure that such low temperatures could be measured: 

• Diode Thermometer: Diodes can be used as thermometers as silicon diodes have 

a linear ratio between the temperature and the voltage.  

• Capacitance thermometer: These are used for measuring ultra-low temperatures 

but is most suited for places with high variations in the magnetic fields. 

• Semiconductor temperature sensors: These sensors are different from 

manufacturer to manufacturer but share multiple characteristics. These 

characteristics are low-cost, linear output and small size. Some disadvantages are 

that they require calibrating, and that the semiconductor chip often has bad 

thermal contact with an outside surface. 

• Metallic Resistance Thermometers: The working principal of these are that the 

resistance change in the metallic conductor when the temperature changes. The 
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temperature may be calculated by utilizing the measured resistance variation. 

These are usually expensive. 

• Thermocouple: A thermocouple is a simple sensor able to measure both ultra-low 

and ultra-high temperatures. It is both low cost and very solid, making it easily 

replaceable if damaged.  

[62] [63]  

The thermocouple was the option that was implemented in this project. 

 

3.7.1 Thermocouple technology 

A thermocouple is made up by two wires where each of the wires are made from 

different metals. A thermocouple consists of a least two junctions, a reference junction 

(cold junction) and the measurement junction (hot junction). The cold junction is the 

point where the wires are connected to the measuring instrument. In this point the 

metals change from the thermocouple metals to copper or similar metals which is 

commonly used in most measuring instruments.  

The output from a thermocouple is a voltage proportional to the temperature difference 

between the cold - and the hot junction. The generated voltage is both small and 

nonlinear.   

Most wires used in thermocouples are alloys and their homogeneity is vital to the 

measuring systems accuracy. [62] 

 

Figure 29 Thermocouple connected to an amplifier [62] 
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3.7.2 Thermocouple types 

There are two basic groups of thermocouples, it is those constructed from noble metals 

and those from base metals.  

The base metals are typically lower cost elements such as copper, nickel, or iron alloys. 

The ratio of metals in the alloys may differ from manufacturer to manufacturer as these 

are not defined, however the voltage/temperature response curves are. 

In noble metal thermocouples both the voltage/temperature response curves and the 

purity levels are defined due to the use of more expensive elements such as Platinum and 

rhodium. [62] 

 

Thermocouple type Use range in Celsius (excluding 

limitation of wire insulation) 

Wire composition 

Type K -270 to 1370 Ni-Cr (+ve) and Ni-Al 

Type N -270 to 1300 Ni-Cr-Si (+ve) and Ni-Si-Mg 

Type T -270 to 400 Cu (+ve) and Cu-Ni 

Type J -210 to 1200 Fe (+ve) and Cu-Ni 

Type E -270 to 1000 Ni-Cr (+ve) and Cu-Ni 

Type R -50 to 1768 Pt13% Rh (+ve) and Pt 

Type S -50 to 1768 Pt10% Rh (+ve) and Pt 

Type B 0 to 1768 Pt30% Rh (+ve) and Pt 

Table 14. Some commonly used thermocouple types and their use range [62] 

 

3.7.3 Thermocouple instrumentation 

To read the measurements of a thermocouple, an amplifier is needed as the voltage can 

be as low as 4µV/C (microvolt per degree Celsius). As the generated voltage is not 

completely linear, a reference voltage in the amplifier is used for compensation. There 

are different kinds of amplifiers such as digital and analog, where the analog is the easiest 

and the digital is the most accurate. [62] 
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3.8 Power consumption 

This chapter will give an overview of the power consumption issues when designing a 

microcontroller system. There are loads of factors that contributes to the overall power 

consumption, with the two major ones being: 

• Operating supply voltage (𝑉𝐷𝐷)  

• System clock frequency 

The product design in this project is built on an Arduino Uno with a LoRa-shield on top. 

The figure below shows current consumption of an Arduino Uno CPU based on these two 

factors. 

 

Figure 30 Arduino Uno Power Consumption [64] 

The LoRa-shield will also contribute to the overall power consumption of the product. The 

figure below provides an overview. 

 

Figure 31 LoRa Shield Power Consumption [65] 
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The prototypes of this project are designed with an Arduino running with 16MHz and 5V 

which gives a constant current consumption of 14mA plus the LoRa shield power for 

consumption.  

 

4 Implementation and results 

This chapter will cover the implementation of a prototype and the parts of the back-end 

system that together creates a complete LoRaWAN system. This chapter will also present 

results during the implementation process, as different results follow the different parts 

of the implementation. 

Firstly, the hardware utilized will be described. Then the development of prototypes is 

covered. After that, the prototypes and the gateway are connected to the back-end 

system. The back-end system is implemented with data storage, data visualisation and 

notifications when the measurements reach a critical level. 

 

4.1 Hardware 

The hardware in this thesis is based on Dragino’s IoT Development Kit [66] with the 

Arduino Uno as a base. The table below shows the hardware used in this project: 

Hardware: Prototype 1: Prototype 2: 

Gateway LG01-N Single Channel 

LoRa IoT Gateway 

LPS8 Indoor LoRaWAN 

Gateway 

Microcontroller Arduino Uno Arduino Uno 

LoRa Shield Dragino LoRa Shield v1.4 Dragino LoRa Shield v1.4 

Temperature measurement DHT11 temperature and 

humidity sensor 

24 AWG K-type 

thermocouple 

AS8495 K-type 

thermocouple amplifier 

Table 15 List of all the hardware used for prototype 1 and prototype 2. 
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Prototype 1 was a learning experience to get to know how LoRaWAN works and therefore 

the hardware was based on a simple development kit from Dragino. 

Some of the hardware used in prototype 1 was not deemed fit to reach the requirements 

for the use-case, therefore a new gateway and temperature sensor was acquired for 

prototype 2. The gateway was changed as the LG01-N only is a single channel gateway 

designed for a private LoRa protocol and was not recommended for LoRaWAN use by 

Dragino themselves [67]. And the temperature sensor was changed to a thermocouple 

with an amplifier to reach the low temperatures required in the use-case (see chapter 1.4 

Use case). 

For more in-depth information about the hardware, see appendix 4. 

 

4.2 Prototypes 

The prototypes developed are on the Arduino platform. This is mainly because the 

development of a prototype started with the Dragino IoT kit. 

 

4.2.1 Prototype 1 

Prototype 1 is based on Dragino’s IoT Development Kit and was used as a learning 

experience for the team to get to know LoRaWAN and learn the basics. 

The prototype is a LoRa Shield combined with an Arduino Uno with a DHT11 temperature 

and moisture sensor connected to read the surrounding temperature. This data would be 

sent to the LG01-N gateway that uses The Things Network (TTN) as its network server. As 

the temperature readings is only shown as a payload in TTN, the application server 

Cayenne Low Power Payload (LPP) “myDevices” was implemented. See appendix 5 for all 

the steps taken to setup the prototype.  
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Figure 32 Prototype 1 

  

The prototype however had a few problems regarding the requirements of the use-case:  

• Problem 1 is that the gateway was not suited for the use-case (see chapter 5.1 The 

development of a second prototype) 

• Problem 2 is that the DHT11 temperature sensor could not reach temperatures 

lower than 0°C which is not low enough for the project’s requirement. 

 

4.2.2 Prototype 2 

 

Figure 33 The LoRaWAN prototype with thermocouple 
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This prototype is based on the hardware for prototype 2 in "Table 15 List of all the 

hardware used for prototype 1 and prototype 2.", and the Arduino LMIC LoRaWAN library 

[68], which is compatible with all Arduino boards. It supports LoRaWAN 1.0.2 and 1.0.3 

Class A devices, using the Semtech SX1272 or SX1276 radio modules. It can be used in the 

several LoRaWAN regions. This implementation uses the SX1276 in the EU regional 

settings.  

This prototype is the one used for the rest of the project implementation and will be 

referred to as “the prototype” or “the device” in following chapters. 

 

4.2.2.1 Pin mapping of the SX1276 LoRa radio module 

To connect the SX1276 radio module to the Arduino, there must be a mapping of pins. 

The digital pins (DIO) of the SX1276 are used in the LMIC library to get status information 

from the transceiver. The transceiver pins that the library needs are DIO0, DIO1 and DIO2. 

The other pins can be left disconnected but should be marked “LMIC_UNUSED_PIN”. 

These transceiver DIO pins can be connected to any of the Arduinos I/O pins.  

[69] 

In LoRa mode, the transceiver DIO pins are configured like this: 

▪ DIO0: TxDone and RxDone 

▪ DIO1: RxTimeout 

For example, when a LoRa transmission starts, the DIO0 pin is configured as a 

TxDone output. When the transmission is complete, the DIO0 pin is set high.  

[69] 

In the sketch for the prototype the pin mapping is set like this: 

const lmic_pinmap lmic_pins = { 

    .nss = 10, 

    .rxtx = LMIC_UNUSED_PIN, 

    .rst = 9, 

    .dio = {2, 6, 7}, 

}; 

C / C++ code snippets 1 Pin mapping SX1272 

The different pins are defined: 
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• nss is active low slave select, Arduino pin 10. 

• rxtx is unused. 

• rst is reset – mapped to Arduino pin 9. 

dio are the transceivers digital input/ output pins 0 to 2 – mapped to Arduino pins 2, 6 

and 7. 

[69] 

 

4.2.2.2 Adding the prototype to a back-end system 

The device is an OTAA device. Therefore, to add the device to a LoRaWAN network server, 

the device EUI and the application key must be set according to the keys generated by the 

network server. The device EUI must be set in little endian format, and the application 

key is set in big endian. These are set in arrays in the sketch. 

static const u1_t PROGMEM DEVEUI[8]={ 0x8e, 0xa7, 0x1f, 0xed, 0x92, 

0x67, 0x80, 0x33 }; 

static const u1_t PROGMEM APPKEY[16] = { 0x2e, 0x1c, 0xc4, 0xab, 

0x16, 0x76, 0x16, 0xf9, 0x8a, 0xe8, 0x73, 0x8a, 0x60, 0x02, 0x6f, 

0x1f }; 

 

C / C++ code snippets 2 Device EUI and application key 

Connecting the prototype to the back-end system is covered in chapter “4.4.2”. 

 

4.2.2.3 Measuring temperature 

The function “readTemp” reads the analog input on the Arduino pin A0 with the Arduino 

“analogRead” function. 

const int temperatureSensorPin = A0; 

analogValue = analogRead(temperatureSensorPin); 

    

C / C++ code snippets 3 Pin mapping and reading analog in 

Then this value is converted to a voltage. The reading has to be timed with the reference 

voltage, and since the reading has a resolution of 1024, the value has to be divided by 

1023. 

voltage = analogValue * 5.0/1023.0; // To turn the analog reading 

into voltage. Uno has 10bit resolution 
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    float temperature = (voltage - 1.25)/0.005; 

int16_t tempDataSend = temperature*10; // Times 10 because the 

tempsensor data is 0.1 C ref Cayenne Low Power Payload (LPP) 

C / C++ code snippets 4 Converting analog value to voltage and temperature 

 

4.2.2.4 Storing the data 

The sketch contains an array the data can be stored in. This array is constructed based on 

the Cayenne Low Power Payload (see chapter “3.3.5 Cayenne Low Power Payload (LPP)”). 

Where the positioning of the data in the array defines the data channel, data type and the 

data with N bytes. 

static uint8_t mydata[4] = {0x01,0x67,0x00,0x00}; //0x01 = 

datachannel1 0x67 = data type 67= temp sensor 0x00 0x00 = data, 2 

bytes 

C / C++ code snippets 5 Array for storing data 

Here, the first position in the array specifies data channel 1. The second position has the 

value of 0x67 HEX = 103 decimal, which specifies that the data type is a temperature 

sensor. The final two bytes are the data for a temperature sensor, as the LPP specifies 

two places for this data type. 

The temperature function stores data in this array by feeding the positions 2 and 3 with 

float data converted to integer data.  

float temperature = (voltage - 1.25)/0.005; 

int16_t tempDataSend = temperature*10; // Times 10 because the 

tempsensor data is 0.1 C ref Cayenne Low Power Payload (LPP)   

// Feed the mydata array with data- The temp sensor have 2 bytes 

data ref LPP 

    mydata[2]= tempDataSend>>8; // Data shift 8 places 

    mydata[3]= tempDataSend; 

C / C++ code snippets 6 Feeding data array 

The data is converted to integer, so that it can be shifted 8 places to the right. This 

shifting is necessary because the temperature data does not take up more space than one 

byte but the LPP has space for two bytes of data. 
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4.2.2.5 Transmitting the data 

The MCCI LMIC library has several types of events. On the event “EV_TXCOMPLETE” the 

previous transmission is completed, and the next transmission can be scheduled. The 

function “do_send” is called on this event. This function first checks if there is a job 

running, either sending or receiving. If there is no job running, the data can be prepared 

for transmission. Here the temperature function “readTemp” is called, it calculates the 

temperature and the data is stored in the “mydata” array.  

// Function for sending data 

void do_send(osjob_t* j){ 

    // Check if there is not a current TX/RX job running 

    if (LMIC.opmode & OP_TXRXPEND) { 

        Serial.println(F("OP_TXRXPEND, not sending")); 

    }  

    else {     

//*** Do the work before sending data via LoRa and LoRaWAN 

    readTemp(); 

 

C / C++ code snippets 7 Function for sending data 

This array is then prepared for transmission with the “LMIC_setTxData2”. 

// Prepare upstream data transmission at the next possible time. 

  LMIC_setTxData2(1, mydata, sizeof(mydata), 0); 

        Serial.println(F("Packet queued")); 

    } // end else 

    // Next TX is scheduled after TX_COMPLETE event. 

} 

C / C++ code snippets 8 Preparing transmission 

 

4.2.2.6 Limiting transmissions / compliance with regional parameters 

To limit the time between transmission there is a parameter to decide how often to 

transmit. 

 // How often to send data in seconds 

const unsigned TX_INTERVAL = 60; 

C / C++ code snippets 9 Transmission interval setting 

This parameter can be used to ensure that the device is compliant with the EU LoRaWAN 

regional parameters and other regional laws and regulation regarding time on air. This is 

an area for future development and is other regional laws and regulation in regard to 

time on air. This is a future development and is discussed in chapter "5.7.1”. 
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The complete source code for this prototype can be viewed in appendix 6. 

 

4.3 Implementation of a LoRaWAN back-end system  

To set up the back-end of a LoRaWAN system, an Ubuntu server installation, with the 

deployment of ChirpStack LoRaWAN server was deployed. ChirpStack has some 

dependencies witch also needed installation. These were MQTT, PostgreSQL, and Redis. 

In addition to this Telegraf and InfluxDB was installed. Telegraf is used for conveying 

measurement data from the ChirpStack application server to InfluxDB. InfluxDB is used 

for data storage, visualization, and notifications. All details of the installation and 

configuration of the back-end system is covered in appendix 7. 

 

4.3.1 Sketch of back-end system setup 

The setup of the back-end system can be viewed as a complete system with components 

that are dependent on each other. To get an overview of how the back-end system was 

implemented it is easier to view an excerpt of the back-end part of “Figure 3 The different 

parts in the implementation”: 

 

Figure 34 Overview of back-end implementation [5]. 
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The gateway bridge communicates with the ChirpStack network server via MQTT. The 

network server and the application server are connected as one “entity” and the 

application server forwards its data to an Influx bucket (similar to database). The data 

from the application server is forwarded by MQTT via Telegraf. 

 

4.4 Connecting to the back-end system 

When the installation of all the components for the back-end was complete, the process 

of adding a gateway and the prototype to the back-end began. Adding these devices to 

the back-end system was done via the ChirpStack application servers web-interface. The 

gateway forwards its packets to the back-end via Semtech UDP packet forwarder. 

 

4.4.1. Connecting the Dragino LPS8 gateway to the ChirpStack LoRaWAN system 

Connecting to the gateway requires the creation of a service profile. The service profile 

was configured with a name and other parameters such as gateway meta data, 

geolocation, battery level of devices and link margin. It was also possible to set the 

frequency for requesting end devices statuses. The data-rate also needed to be 

configured and was set to the range of 0-5 for the EU region [70]. 
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Figure 35 Service profile 

When the Dragino LPS8 gateway was added to the system, it is displayed with a status on 

the application server which provides information about the gateway name, ID, network 

server and when it was last seen by the system.

 

Figure 36 Gateway status in the application servers web interface 

It was also possible to view live LoRaWAN frames as the gateway communicated with the 

ChirpStack system. Here is a LoRaWAN frame that have been sent from the gateway. 
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Figure 37 Live LoRaWAN frames from the LPS8 gateway 

This made it possible to check that there was communication between the gateway and 

the network and application server. 

 

4.4.2 Connecting the prototype to the back-end 

To connect the prototype to the back-end system, it was first necessary to create an 

application and a device profile for it to be assigned to, in the ChirpStack application 

server’s interface. The application was assigned to the same service profile as the LPS8 

gateway. The creation of the application was limited to giving it a name, a description and 

applying the service profile. 
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Figure 38 Creating an application for the prototype 

 

Next was the creation of the device profile. The device profiles define a lot of different 

parameters. In this case the LoRa MAC version that the prototype 1 device supported was 

1.0.2. The device class was class A. The ADR algorithm had only a default option. And the 

interval for the device uploads is set to determine when or if a device is inactive. Further 

the device profile decides if devices should be activated through OTAA or ABP. In this 

implementation OTAA was used. EIRP (the transmission power) was not altered. 

 

Figure 39 Device profile – defines LoraWAN version, LoRaWAN class, ADR and EIRP 
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Next was adding the prototype. This was done by assigning a name to the device, a 

description, the device EUI and assigning it to a service profile. Once the device was 

added it would be activated by OTAA. It was possible to view the parameters the network 

server had generated and assigned to the device. These parameters were device address, 

network session key and application session key. It was also possible to view a count of 

the device LoRaWAN frame uplink and downlinks. 

 

Figure 40 Parameters assigned to the device 

When the device was added it had a similar status as the gateway where it was possible 

to see when the device was last seen. 
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Figure 41 Device status, last seen. 

Both live LoRaWAN frames and device data could be viewed under the application in the 

interface. This was a good way to see if there is any data reaching the application server. 

In device data, the application payload was recognized as a temperature sensor with its 

corresponding value. This is because of the LPP and ChirpStacks support for this protocol 

(see chapters “3.3.5” and “4.2.2.4”) 

  

Figure 42 Sensor type and value recognized from payload 
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When both the gateway and the device were added, their status is presented in an 

overview under the organization they are connected to.

 

Figure 43 Organizational status overview 

This status provides a quick check to see if any devices are considered inactive, never 

have been seen or active devices. 

 

4.5 Storing measurement data 

 

Figure 44 Conveying data and storing it [5] 

Data that arrives at the back-end system does not automatically get stored anywhere. To 

have a data storage where the data can be monitored over time, it is necessary to 

implement a database system. InfluxDB (see “3.6”) was chosen for this task. Why InfluxDB 
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was chosen over PostgreSQL is covered in chapter “5.3”. Data is sourced from the 

ChirpStack application server to InfluxDB. This is done with the help of Telegraf and 

MQTTs publish and subscribe principle (see ”3.3.2.2.1 The publish and subscribe model.”). 

 

4.5.1 Conveying data with Telegraf 

To get measurement data from the ChirpStack application server to an InfluxDB database, 

Telegraf (see “3.5”) was used as an intermediate. There is an integration option in the 

ChirpStack application server for connecting directly to an InfluxDB database [71], but this 

does not yet have implemented support for InfluxDB version 2 [72]. Therefore, Telegraf 

was chosen to do this task as it is a good option for migration [73]. Telegraf is installed as 

a service running on the same server as the rest of the back-end system. 

The configuration of Telegraf defines how it should convey data by using input and output 

plugins. This configuration is done in the Telegraf configuration file “telegraf.conf”. 

Telegraf sourced the measurement data from the application server via an MQTT plugin 

[74]. A MQTT plugin was used, as it already runs in the system and connects many of the 

components in the back-end (see “Figure 34 Overview of back-end implementation”). 

First the MQTT plugin was configured to connect to the MQTT server (Mosquitto – see 

chapter “3.3.2.5 Mosquitto – an open source MQTT server”) with address and port 

number to listen to. 

 

[[inputs.mqtt_consumer]] 

  ## Broker URLs for the MQTT server or cluster.  To connect to multiple 

  ## clusters or standalone servers, use a seperate plugin instance. 

  ##   example: servers = ["tcp://localhost:1883"] 

  ##            servers = ["ssl://localhost:1883"] 

  ##            servers = ["ws://localhost:1883"] 

  servers = ["tcp://localhost:1883"] 
 

Configuration 1 Setting MQTT server address and port 

Then the topics to listen to was defined. The application server publishes data from the 

given application by its ID number, in this case it is number 3, and the rest of the topic is 

specified by the event up. This means that it listens to the device uploads, which contain 

the payload with measurement data. 
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  ## Topics that will be subscribed to. 

  topics = [ 

    "application/3/device/+/event/up" 

  ] 
 

Configuration 2 setting the topic for subscription using a Telegraf input plugin 

To output this data into InfluxDB, Telegraf was configured with the “InfluxDB v2” output 

plugin [75]. This was set to write the data to the specified bucket on the address and port 

for InfluxDB. 

[[outputs.influxdb_v2]] 

  ## The URLs of the InfluxDB cluster nodes. 

  ## 

  ## Multiple URLs can be specified for a single cluster, only ONE of the 

  ## urls will be written to each interval. 

  ## urls exp: http://127.0.0.1:8086 

  urls = ["http://localhost:8086"] 
 

Configuration 3 setting the address and port for writing data to 

Then a token for accessing the bucket is defined. This token is required for write and read 

permissions. 

## Token for authentication. 

  token = "oHkCIQEIi2LP5iPZkx-v6khWMQ9uu2Xbd3A-

sbZwa5iSHpi1WfviKbWbEEahg4tKI3GP-wv6_Fs1296nHF69_g==" 
 

Configuration 4 Setting the token for bucket read / write permissions 

Then the organization and bucket to write to is defined. (The bucket is named prototype 

1, but is used for prototype 2. Renaming it could have undesirable consequences for data 

queries and more, therefore its name remains unaltered). 

  ## Organization is the name of the organization you wish to write to; must exist. 

  organization = "B21E05" 

 

  ## Destination bucket to write into. 

  bucket = "prototype1" 
 

Configuration 5 setting the organization and bucket to write data to 

With these plugins configured Telegraf could convey its data to InfluxDB. 
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4.5.2 Storing data in InfluxDB 

Storing the measurement data is done in InfluxDB. The data from Telegraf is written to a 

InfluxDB bucket. This bucket was created in InfluxDBs user interface. 

 

Figure 45 Creating bucket and setting retention period 

Here the bucket is named, and the data retention period was set. The data to be fed into 

this bucket was set earlier in the Telegraf plugin. And when the bucket was created the 

data explorer was used for checking if any data was reaching the bucket. The option "view 

raw data" was a way to do this. 
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Figure 46 Inspection of raw data 

The inspection is set for data for the past hour, to be refreshed every five seconds, and 

the data is set for the last value. The inspection of data for the bucket prototype1 has the 

option for filtering by the field “object_temperatureSensor_1”. This means that the 

measurement field is reaching the bucket, since the measurements are using the field 

names from the object JSON key [71]. One can also see that the values for the 

measurements are reaching the bucket under the _value column. When it is verified that 

data is reaching the bucket the creation of queries was done. The queries were set to the 

last value for measurements and the measurement data. These queries were saved as 

data cells and could then be used for data visualisation in the InfluxDB dashboard 

manager. 
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4.6 Test of data visualization  

 

Figure 47 Test measurement in freezer. 3 different cells for visualization 

The measurement data could be visualised in many ways. This was done via the 

dashboard in InfluxDB where cells with different ways of displaying data is created. Here, 

the data is shown in cells for a graph, a gauge, and a single stat. During a measurement 

test in a freezer, the graph shows that the prototype had been in room temperature 

before the temperature plummets when the freezer measurement began. The graph 

shows data for the past six hours, but this time period could be set to any amount of 

time. 

 

4.7 Setting up back-end notifications 

In the monitoring of the temperature, it would be desirable to have a form of notification 

if the temperature rose beyond a critical value. To solve this InfluxDB can be used with 

the option for alerts. To set up notifications in InfluxDB, there are three steps to follow. 

The first step was setting up a check. The check is set as a critical value check and defined 

to be triggered when the temperature is above -20 C (this due to testing in a normal 

freezer at this stage).  
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Figure 48 setting the data to check 

This was done by selecting which data to check and then set a threshold. The data was set 

by selecting the bucket and the right measurement. Just like when setting up queries for 

visualisation of data. 

 

Figure 49 Setting the threshold to monitor 
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When the check was set, the next step was to create a notification endpoint in InfluxDB. 

Pagerduty was used for this notification endpoint test. This was done using Pagerdutys 

events API [76]. 

 

Figure 50 Notification endpoint 

The endpoint in InfluxDB was integrated with PagerDuty using PagerDutys guide for 

InfluxDB integration [77]. With the notification endpoint set, the final step was 

configuring the notification rules. In the ruleset the notifications are configured with the 

time interval for when a notification should be sent. Then the conditions for the 

notification are set. Here it was set for when a status is equal to critical. The status critical 

was defined in the check to be when the temperature was above -20. In this test of 

notification, a critical value condition was used. There are other levels of notifications as 

well. These are info, warn, ok and any. So, there are many possibilities for setting up 

notifications about status, and early warnings. 
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Figure 51 Configuration of notification rule 

With these steps in InfluxDB complete and with a trial version of PagerDuty the 

implementation for notification was tested. PagerDuty was set to notify by email and 

SMS. In addition, there is an overview of incidents on PagerDutys site. 

 

Figure 52 Overview of incidents on PagerDutys site 
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The notification appeared on the site, and an email and SMS were received when the 

check reach critical. 

 

 

 

Figure 53 Email notification from PagerDuty 

 

 

 

4.8 Testing the thermocouple at ultra-low temperatures 

The thermocouples ability to measure ultra-low 

temperatures was tested by measuring a freezer that 

held -75°C at the bioengineer laboratory at HiØ. This 

test was done purely on the basis of looking how well 

the thermocouple did and was not performed with the 

final prototype, so the temperature is only measured 

and shown on Arduino IDE’s serial monitor. 

 

Figure 55 The thermocouple inside the 

ULT freezer 

Figure 54 SMS notification from 

PagerDuty on critical value for the 

prototype 
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As seen below, the thermocouple needs some time to adjust to the new temperature. 

The voltage shown in the measurements is purely a variable used to calculate the 

temperature. When the thermocouple had cooled down, it stabilized and the 

temperature readings were accurate, with only a small deviation of 1-2°C. 

Temperatures imediately after putting the 
thermocouple in the freezer 

Measurements after the the temperature 
had stabilized 

 

 

 

 
Table 16. Ultra low temperature measuring test 

In addition to testing the measurement capability at ultra-low temperatures, three other 

tests were also performed. These tests were done on room temperature, a refrigerator, 

and a standard freezer. To see these result look at appendix 8. 

 

5 Discussion 

5.1 The development of a second prototype 

During the project, the team developed two prototypes based on LoRa and LoRaWAN. 

There are two main reasons for why the project team chose to develop a second 

prototype. The first reason is that the first prototype, that was based on the Dragino IoT 

development kit, was too complete. Meaning that there was not a lot to do for the 

project team other than to follow the manual that came with the kit. There was also a 
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sketch for the Arduino which only needed some modification for the first prototype to be 

up and running. The project team wanted a deeper understanding and a prototype that 

was developed by the team itself. 

The second reason is that there is a limitation in using the gateway that came with the kit. 

This gateway operates on only one frequency. This means that the sketch for the first 

prototype needed to use a specially adapted version of the LMIC library for Arduino to 

function towards this gateway. This library was not maintained by Dragino and they 

expected it to be full of bugs. As stated by Dragino support here: 

“Our LMIC library end node used for Arduino is not maintain for a long 

time. So this should not be used for production enviornment and we 

expect there will be lots of bugs. 

For your case, if the Arduino keeps sending packets( even the packets 

doesn't arrive ChirpStack, for example power off the gateway). If you 

power on the gateway again, the ChirpStack should be able to get the 

packets unless there is some requirement on ChirpStack such as keep 

alive request. I am not familiar with ChirpStack so i can't help you 

further on this topic.” - Edwin Chen, Dragino support 

 

A library that was not maintained and could not be used for a production environment 

was not suitable. Therefore, there was a need for hardware that could use standard 

LoRaWAN libraries. Furthermore, this also meant that no ordinary LoRaWAN node would 

work towards the LG01-N gateway. This was also confirmed by Dragino support: 

“The single channel gateway has limitation to use with standard 

LoRaWAN sensor. In single channel gateway, the gateway can only set 

to work at one frequency and data rate. A standard LoRaWAN Sensor 

can works in different frequency (3~72 depends on the frequency bands) 

and different data rates. So Single channel gateway will also lost 

packets because the frequency and data rate mismatch.” Edwin Chen – 

Dragino support. 
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The full email correspondence is in appenix 9. The manual for the Dragino IoT kit v2 also 

states issues with the limitations of the LG01-N gateway as seen from the excerpt from 

the manual at appendix 10. This meant that the LG01-N gateway had to be replaced with 

a standard LoRaWAN gateway without these limitations. 

It could be argued that the project team should have known about this issue beforehand 

and therefore purchased a standard LoRaWAN gateway and hardware for nodes that 

would be standard LoRaWAN nodes. But having no experience of the systems and 

technology from before, the project team had no prerequisite knowledge of this being an 

issue and could therefore not have come to this realization before the project began. The 

projects advisors were also not aware of this being an issue when the kit was suggested 

for the project at the beginning. 

 

5.2 Temperature measuring device  

The DHT11 temperature sensor was used with prototype 1 as it was based on the Dragino 

LoRa development kit. This was discovered to not fulfil the requirements for the use case 

as it could only measure down to 0°C and had to be replaced for prototype 2. 

To choose the new temperature sensor for prototype 2, a few different options was 

considered (see “3.7”). By evaluating the different methods and looking at the availability, 

the thermocouple was concluded by the group as the best option. It is a low cost option, 

can measure down to the required temperatures, is very robust, and was possible to 

implement within the time limit.  

An issue with the 24 AWG K-type thermocouple is that it cannot measure lower 

temperatures than -73°C (referring to Appendix 4). However in reality it did measure 

down to -76.61°C during testing (see 4.8 Testing the thermocouple at ultra-low 

temperatures). That is still not as low as the lowest point that Pfizer’s vaccine requires. 

The team was aware of this when ordering the thermocouple. The decision to order this 

thermocouple was due to time limitations, and that the retailers did not have a 

thermocouple that could reach the required temperatures in stock when the order was 

made. 
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5.3 The choice of database system for implementation 

To store measurement data the system implementation needed a database system. The 

back-end system does already have the PostgreSQL database system installed, for which 

it relies on. Then why use InfluxDB instead of using the ChirpStack integration for 

PostreSQL [78] to store data from the application server? As the developer of ChirpStack 

puts it:  

“It depends per use-case. E.g. it is one less component to worry about, 

as PostgreSQL is already required by LoRa App Server so you don’t have 

to install InfluxDB. Also it could provide more flexibility as you can write 

more advanced SQL queries compared to InfluxDB. It could also be used 

as an intermediate storage which is used by applications to fetch (and 

then remove) data from. On the other hand, InfluxDB is written specific 

for time-series data and depending your use-case, you might find 

features in InfluxDB that are not present in PostgreSQL.” – Orne Brocaar 

[79] 

The fact that InfluxDB is written as a timeseries database makes it more attractive [80]. 

And features that is interesting from InfluxDB is data visualization [56] many possible 

tools and integrations [81] and the setting of alerts with option for integration with a 

notification service [58]. 

If the inbuilt options for visualisations are insufficient, there are other services that can 

display data by using InfluxDB as data source. InfluxDB have integrations for Grafana and 

Google Data studio [82]. If the options for incident management and alerting are 

insufficient there are integrations for this [83] , as well as several other integrations via 

Telegraf [84]. These possibilities for integrations substantiate the capabilities of InfluxDB. 

 

5.4 Existing solution and what our solution offers in comparison 

This chapter describes the similar existing solution to the issues solved in this project. The 

existing solution is compared to the product designed. Pfizer and Orioin M2M has 

solutions similar to our system. 
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5.4.1 Pfizer’s solution 

Pfizer is supported by Softbox and Controlant in the global distribution of the Covid-19 

vaccines. Softbox has developed a freezer for Pfizer, that uses a specialized reusable ultra-

low temperature (ULT) shipper that also works as a point of use storage unit. Controlant 

has produced a real-time, reusable data logger with a temperature probe which is 

enabling the possibility to help manage temperature proactively and having the possibility 

to react. Controlant’s solution also gives the opportunity to alert Pfizer when the Softbox 

container has reached its destination and when it is getting shipped back aswell.  

[85] [86] 

 

5.4.2 Orion M2M solution 

Orion M2M has developed a solution that is using LoRa. The solution is making it possible 

to remote monitor temperature and humidity. Mainly this solution allows temperature 

monitoring and geolocation of refrigerators, monitoring of pharmacy refrigeration 

chambers and monitoring of warehouse and commercial refrigeration equipment. They 

are monitoring the refrigerators through their own radio modem called Orion Meter, 

which is then connected to LoRaWAN and OrionM2M network. The systems support 24/7 

temperature and humidity control. It archives the temperature change readings hourly 

for 62 days. And there is SMS and email notifications [87]. 

 

5.4.3 The projects solution in comparison 

The intention of this project was not to make an improved version of an already existing 

solution, but rather to develop and implement a functional prototype based on the set 

use case the project team found interesting. The team was not aware of already existing 

solutions, as some of these were recently released on the market, even during this 

projects time frame. Therefore the use case was not set based on existing solutions. Our 

product does not have a direct comparison to the existing solutions. The project team 

thinks that the solution developed is closing in on the same functionality and level of 
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service as some of the existing solutions. If the project were to continue towards a 

commercial product, a more thorough market research would be necessary. 

 

5.5 Alternatives to our solution 

This chapter will discuss different alternatives to the parts in this project. Alternative 

solutions for end device and alternatives for the back-end system are covered.  

 

5.5.1 Using mobile networks exclusively  

For an alternative end device, one could use devices that communicates by mobile 

networks exclusively. But then, each device would have to talk to the mobile network 

directly. This would mean that one would have to have subscriptions for every device. 

This could be costly, and if one is to ship large amounts of cargo, it would quickly add up 

in number of devices. In addition, there is the issue of price variations according to the 

which nation the cargo is in at the time of transmission. But since the amount of data to 

be transmitted is small, this cost might not be too great, dependent of the cost for 

operating a given number of devices. Alternatively, one could instead have one gateway 

to talk to the mobile network if the transport is outside the coverage of a LoRaWAN 

network. This way there is only need for one unit to subscribe to the mobile network, 

thus reducing cost. This makes LoRaWAN a good supplement to mobile networks for 

collecting the data. The gateway may use the mobile network if there is a need for such a 

connection. This also will reduce the number of devices on the mobile network. 

Dependent on how many messages that requires transmission one gateway can support a 

varying, but large number of devices: 

A single eight-channel gateway can support a few hundred thousand messages 

over the course of a 24-hour period. If each end device sends 10 messages a day, 

such a gateway can support about 10,000 devices. If the network includes 10 such 

gateways, the network can support roughly 100,000 devices and one million 

messages. If more capacity is required, all that is needed is to add additional 

gateways to the network. [9] 
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One LoRaWAN gateway can therefore reduce the number of devices required to connect 

to mobile networks by a significant amount.  

 

5.5.2 Alternative back-end solution 

The back-end system in this project uses ChirpStack. There are alternative existing 

solutions which can be used. The Things Network is a network one can connect to for 

using LoRaWAN. But, if one is to use LoRaWAN in a professional setting, The Things 

Network (TTN) cannot cover this. This is because TTN have limitations and a fair use policy 

[88]. For example, the fair use policy states that one is limited to: 

▪ An average of 30 seconds uplink time on air, per 24 hours, per device. 

▪ At most 10 downlink messages per 24 hours, including the ACKs for 

confirmed uplinks. [89] 

This is fine for testing purposes and getting started with LoRaWAN, but would prove not 

ideal for professional use.  

There is an alternative server system to ChirpStack that one could install on a server or 

host in the cloud. This is called The Things Stack (TTS), offered by The Things Industries 

[90]. But, unlike ChirpStack there is a prerequisite license required if one is to run more 

than 30 devices, have more than 3 gateways and more than 3 users. So, the free tier of 

The Things Stack might not cover the need for a professional environment. The Things 

Industries does offer cloud services for professional use, but at the base price at 190 

Euros per month. They also offer an enterprise solution which starts at 500 Euro per 

month. If one is to choose between options for support, it becomes even more expensive. 

The cost also increases per 1000 devices. This makes the use of ChirpStack for the back-

end solution more desirable, as it is free at open source. [91] 

 

5.6 LoRa and LoRaWAN Network coverage 

If there is no need for an existing network with a vast coverage of LoRaWAN gateways, 

one can simply install gateways where the coverage is needed and run a private network. 

This might be cheaper than purchasing a service that has LoRaWAN coverage in a large 
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geographical area, if this is coverage is unnecessary. For example, if one only needs 

LoRaWAN coverage in a warehouse and in the trucks that transport shipments, this is 

solved easily by having a gateway in the warehouse and one gateway in each truck. These 

gateways will provide LoRaWAN coverage where it is needed – and devices can be moved 

wirelessly from the warehouse to the truck and change gateway without any need for 

gateway handover as covered in chapter “3.3.1.2.2 Gateway”. The gateway in the truck 

can then have access to internet via mobile network as discussed in chapter “5.5.1”. 

Having full control of the network helps with keeping control over aspects such as 

security, and data integrity by not sending data to unknown servers. 

 

5.7 Further development of the project in the future? 

This chapter will cover some possible steps for further development. Developments seen 

as a natural progression are:  

▪ Compliance with regional parameters 

▪ Data logging in the case of communication and critical levels 

▪ Securing MQTT communications 

▪ End device memory usage issues 

▪ End device current consumption issues 

▪ Further development for system on chip 

▪ Expanded temperature range measuring 

 

5.7.1 Compliance with regional parameters 

To ensure usage in Norway and EU, there is regulations that needs to be followed. 

Specifically in Norway the product would have to meet the regulations of 

“fribruksforskriften”. This has not yet been implemented into the prototype but would be 

one of the main goals in making the system into a commercial product. 

“Fribruksforskriften” in Norway is allowing data-transmissions in data-networks in 

different frequencies. [17] In EU, LoRa regional parameters must be in compliance with 

LoRaWAN reginal parameters [70]. 
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5.7.2 Data logging in case of loss of communication and critical levels 

If the end device loses communication with the back-end system and the temperature 

reaches warning or critical levels, a functionality for datalogging on the end device should 

be implemented. With further development of the product, a solution to this issue would 

be necessary. Several options were discussed during the design process. A possible 

solution could be implementing a check for loss of communication with gateway and flags 

that can be set at certain temperature levels in the end device firmware. 

 

5.7.3 Securing communications - Encryption of MQTT communication 

In the back-end system MQTT is a vital part, and therefore it should secure. As the system 

is now, the MQTT communication is not encrypted. In further development of the system 

such encryption should be implemented to secure the communication and data integrity. 

The integrity of the data may be compromised if the system is fed invalid data from 

unauthorized sources. 

 

5.7.4 Reviewing use of library for prototype 

The library used in the prototype implementation has certain limitations. If it was 

desirable to create a class B or C device, or a LoRaWAN 1.1 device - we would have to find 

another library, as the one used only has support for class A and LoRaWAN version 1.0.2 

and 1.0.3 devices. Class B support is present in the library, in an untested capacity. The 

library does also uses a lot of memory. [68] 

This library can be quite heavy on small systems, especially if the fairly small 

ATmega 328p (such as in the Arduino Uno) is used. In the default configuration, 

the available 32K flash space is nearly filled up (this includes some debug output 

overhead, though). [68] 

The library, with the added functionality for temperature measurements takes up 75% of 

the available memory, and a warning for instability is given in the compiler. 
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Figure 56 Memory warning - Arduino IDE 

This may be an argument for using a different library, or also changing the hardware for 

end device. 

 

5.7.5 Replacing or supplementing hardware for end device 

For the first prototype, the LoRa MAC Handler library provided by Dragino and the 

Arduino MCU does not provide flexibility with configuring low power modes. It is 

therefore not an ideal MCU to create a product with acceptable battery life.  

A better choice of end device for this project might be to base it on a STM32WL55 board. 

The two main arguments being that the STM32 microcontroller provides more storage 

and lower power consumption compared to the Arduino Uno CPU. The Arduino Uno 

provides 32k bytes of flash, while the STM32 microcontroller provides 256k. The increase 

of storage would be a necessity with the implementation of GPS for our system. The 

STM32 microcontroller offers more flexibility with low power configuration compared to 

the Arduino Uno. The STM32 MCU has the capability of running in stop mode most of the 

time with a timer and RTC active for interrupting purposes. Stop mode on the STM32 has 

a current consumption of 1,07µA. The Arduino Uno low power modes do not meet the 

requirements for our project design and needs to be run in active mode constantly. Active 

mode has a current consumption of 1,5mA which is 1400x more compared to the STM32 

microcontroller.  

Because of the massive benefits provided, an attempt in transferring the design to a 

STM32WL55 board was made, but with little success. More detail about this process is 

given in the appendix 11. 

 

5.7.6 System on chip – A prototype / product on a printed circuit board 

When the development of an end device prototype is considered finalized, it could be 

integrated on a printed circuit board (PCB). Firstly, this must be designed in a software for 

PCB, then a small amount could be ordered for testing purposes. This can be ordered 
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from for example JLCPCB [92] or any other such manufacturer. If these prototypes are 

approved, the next stage would then be the production of complete products. This 

production could be done by the same manufacturer of the integrated prototypes. 

When the development of an end device prototype is considered finalized, it could be 

integrated on a printed circuit board (PCB). Firstly, this must be designed in a software for 

PCB, then a small amount could be ordered for testing purposes. This can be ordered 

from for example JLCPCB [92] or any other such manufacturer. If these prototypes are 

approved, the next stage would then be the production of complete products. This 

production could be done by the same manufacturer of the integrated prototypes. 

 

5.7.7 Expanded temperature range measuring 

The vaccines can be stored with other temperature requirements in limited time periods 

[2]. The prototype can easily be modified by changing the firmware to meet these 

requirements. The thermocouple covers a wide enough range of temperatures (see 

appendix 4).  

 

5.8 Alternative use-cases 

The components of this project can be used in other use cases or other forms for 

deployment. Both the prototype and the back-end system can be used as they are or be 

configured or altered to fit other cases. 

 

5.8.1 Prototype 

The prototype can be used in other use cases, as it is. It measures extreme temperatures 

and transmits its data via LoRa and LoRaWAN. Such device has loads of alternative use-

cases where the monitoring of extreme temperatures is needed. With simple 

configurations the system could be used to monitor other products or systems like other 

vaccines with low temperature requirements. The 24 AWG K-type thermocouple can also 

easily be replaced with another K-type for an even larger range of temperatures (see 

chapter ”3.7”) as the AS8495 K-type thermocouple amplifier supports any K-type. 
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With the established LoRa and LoRaWAN functionality of the prototype, it can be altered 

with both hardware and firmware to new applications using this form of communication. 

This way the prototype can be used as a platform for developing other types of end 

devices. 

 

5.8.2 The back-end system 

There was no need for special adaptation of the back-end system for this project’s use 

case. This means that the back-end system can be used for any other use case utilizing 

LoRa and LoRaWAN. The LoRaWAN part with ChirpStack does not need any modification, 

adding new types of end devices can easily be done. The data handling with InfluxDB can 

be configured to suit new types of data or measurements with simple steps. 

Parts of the back-end system can also be extracted to be used with other forms of 

communication other than LoRa and LoRaWAN. This can be over Ethernet, Wi-Fi, mobile 

networks, Bluetooth, or any other form of communication. For example, the parts 

Mosquitto, Telegraf and InfluxDB can be used in any application where MQTT is used for 

data/ payload communication. Telegraf and InfluxDB can still be used for conveying data, 

data storage, visualization, and notification. Further, Mosquitto and MQTT can be 

removed and Telegraf and InfluxDB can be used for handling data with the use of any 

other type of protocol. 

Also, the system can support LoRa, LoRaWAN, MQTT and any other forms of 

communication and protocols at the same time. By assigning different data-buckets in 

InfluxDB to each application, the system can gather data from a variety of sources 

simultaneously. Therefore, it has the capability to be a universal back-end systems for 

several different deployments of technologies. This shows that the back-end system and 

its parts offer a great deal of flexibility. 

 

5.9 Covid’s impact on the project 

The development of a second prototype presented an issue with the access to hardware 

required for development. There was a need for a new gateway, one that could support a 
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standard LoRaWAN node. The gateway LG01-N that came with the Dragino IoT kit used 

for the first prototype (see chapter “4.2.1”) could not support standard LoRaWAN nodes 

as covered in chapter “5.1 The development of a second prototype”. Østfold university 

college provided a standard LoRaWAN gateway, that the project team needed to share. 

The situation due to Covid, meant that only one of the team members could use the 

gateway at a time, to develop a second prototype. This was far from ideal because it 

meant that there were three other members that were idle in the development aspect, 

because there is a need for a gateway to test the prototype against. Having only one 

gateway would have been too crippling. This was somewhat resolved by one team 

member purchasing a gateway for himself. If there had been no Covid lockdown or 

restrictions, the project team could have all been working on developing prototypes and 

testing it against the same gateway, at the same time. The lost access to the campus, 

laboratory and all its resources and the possibility for a closer collaboration, have heavily 

impacted the project and its team. This situation, which has made things difficult have 

resulted in slower progress than normal circumstances would have. 

Further, the work at home situation led to the implementation of the back-end system 

being done in a way that was not ideal. This system implementation was installed on a 

disused desktop on a local network. This was due to the “work at home” situation caused 

by Covid-19. This means that there was no way for the entire team to connect to the 

server due to it running on a local IP-address.  

 

  



97 

 

6 Conclusion 

The project team have through theoretical study, prototype development, and practical 

implementation of a back-end system successfully implemented a working LoRaWAN end 

device and a complete LoRaWAN back-end system. Through this study and 

implementation, the team have gained an understanding of how a LoRaWAN system 

works.  

To solve the task of measuring ultra-low temperatures the team implemented relevant 

technology with the use of a K-type thermocouple. The thermocouple measurements 

were tested in ultra-low temperatures successfully. The prototypes then transmit these 

measurements by LoRa and LoRaWAN to a back-end system with success. 

The implementation of a complete back-end system solves the task of temperature 

monitoring with the storage of measurement data, data visualisation, and notification of 

crucial temperature levels. To solve the implementation of LoRaWAN in the back-end, the 

team utilized ChirpStack. The data processing was solved by implementing Telegraf and 

InfluxDB. Notifications were implemented through InfluxDB and were tested. Both email 

notification and SMS arrived at user end-point successfully. 

The project team considers the prototype to be a good starting foundation. However, 

further research and development is required for a more completed product. 

By trying to solve a relevant problem in society with new technology and compiling this 

knowledge into an overall understanding of how such a problem can be addressed, this 

project has an added value beyond the pure academical aspect. 
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7 List of words, acronyms, and expressions 

 

Acronyms 

ABP  Activation By Personalization. 

API  Application Programming Interface 

CPU   Central Processing Unit 

ERP   Effective Radiated Power 

FSK Frequency Shift Keying 

JSON JavaScript Object Notation 

LoRa   Long Range 

LoRaWAN Long Range Wide Area Network 

MCU  Micro Controller Unit  

MQTT  Message Queuing Telemetry Transport 

OTAA Over The Air Activation 

SSL  Secure Sockets Layer 

TLS  Transport Layer Security 

 

Other Words or expressions 

Protobuf Protocol buffers  
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